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Abstract 

Data dissemination systems are difficult to design properly. Since interest in this topic is relatively 
new there is little experience with methods for making performance decisions. This project has been 
focused on providing tools for understanding the impact of design decisions in disseminat.on-based data 

We have developed two broad classes of tools. The first is a set of simulation-based tools that allowed 
us to study fundamental algorithms. We have applied these simulators to the problem of information 
channelization. We have built a test harness for controlling the deployment of multiple experiments and 
the collection of results into a convenient graphical form. We see this a major step toward a commander s 
workbench, a tool to help commanders make resource allocation decisions. 

The second class of tool is a toolkit that allows us to quickly assemble prototype (perhaps in a local- 
area network) that mimics the ultimate deployed system. A prototype of this kind can be instrumented 
and performance measurments can be collected that gives us more realistic insight than a simulator. This 

approach provides the second line of defense. 



Technical Report 

1    Dissemination-Based Information Systems 

The proliferation of the Internet and intranets, the development of wireless and satellite networks, and the 
availability of asymmetric, high-bandwidth links to the home, have fueled the development of a wide range of 
new "dissemination-based" applications. These applications involve the timely distribution of data to a large 
set of consumers, and include stock and sports tickers, traffic information systems, electronic personalized 
newspapers, and entertainment delivery. Dissemination-oriented applications have special characteristics 
that render traditional client-server data management approaches ineffective. These include: 

• tremendous scale. 

• a high-degree of overlap in user data needs. 

• asymmetric data flow from sources to consumers. 

To address the particular needs of dissemination-based applications, we have developed a general frame- 
work for describing and constructing Dissemination-Based Information Systems (DBIS) [Fran97, Fran98J. 
The framework incorporates a number of data delivery mechanisms and an architecture for deploying them 
in a networked environment. The goal is to support a wide range of applications across many varied en- 
vironments, such as mobile networks, satellite-based systems, and wide-area networks. By combining the 
various data delivery techniques in a way that matches the characteristics of the application and achieves 
the most efficient use of the available server and communication resources, the scalability and performance 
of dissemination-oriented applications can be greatly enhanced. We have constructed an initial version of a 
toolkit that implements this framework, and have demonstrated it at the 1999 ACM SIGMOD International 
Conference on the Management of Data [Alti99]. 

1.1 The DBIS Framework 

The basic concepts of the DBIS framework were presented at the OOPSLA 97 conference [Fran97]. A 
more recent description appears in [Akso98b]. The two major features of the framework are: First, it 
incorporates a number of different options for data delivery, including traditional request-response, pub- 
lish/subscribe, Broadcast Disks and on-demand broadcast [Akso98a]. Second, it is based on the notion of 
network transparency, which allows different data delivery mechanisms to be mixed-and-matched within a 
single application. Network transparency is provided through the use of Information Brokers, which acquire 
information and distribute it to other consumers. Brokers are middlemen; a broker acts as a client to some 
number of data sources, collects and possibly repackages the data it obtains, and then functions as a data 
source to other nodes of the system. Along the way, brokers may add value to the information, such as 
integrating it with data from other sources or enhancing its organizational structure. By creating hierarchies 
of brokers, information delivery can be tailored to the needs of many different users. 

1.2 The DBIS Toolkit and Example Application 

We have developed an initial prototype of a toolkit that implements the DBIS architecture. The toolkit is 
written in Visual C++ and runs on Windows NT. It exploits the IP-Multicast support that is included with 
NT 4 0 The toolkit consists of 30,000 lines of code, although a portion of this consists of code generated by 
the Visual C++ tools for user interface functions. The toolkit is described in more detail in [Alti99J. 

The toolkit provides a set of application programming interfaces (APIs) and libraries that allow a de- 
veloper to construct and experiment with a DBIS application. The DBIS-Toolkit consists of four main 

components: 



Data Source (DS) Library - a data source wrapper that encapsulates network communication and 
provides conversion functions for data. 

Client Library - a client program wrapper that encapsulates network communication and provides 
conversion functions for queries and user profiles. It also provides monitoring and filtering of broadcast or 
multicast channels. 

Information Broker (IB) - the main component of the DBIS-Toolkit. The IB contains communication, 
buffering, scheduling, and catalog management components and is described in more detail below. 

Information Broker Master - The IB Master is responsible for managing global catalog information 
about data and the topology of the DBIS. All IBs must register with the IB Master and all catalog updates 

must be sent to the IB Master. 

In addition to these four components, the toolkit contains a flexible performance monitoring and instru- 
mentation interface that can be used to graphically display real-time performance metrics such as bandwidth 
and CPU utilization, response times, etc. on a per-IB basis. The instrumentation tool also allows more 
application-specific metrics to be obtained and displayed. 

We have used the toolkit to construct a CONUS weather map dissemination application, in which weather 
maps for various regions of the Continental United States can be delivered to large numbers of users via 
push/pull, multicast/unicast and their various combinations. Perhaps most impressively, we demonstrated 
how the data delivery mechanisms between various components can be changed on-the-fly, without requiring 
the application to be restarted, and without impacting components that were not directly connected to the 

changed data flow. 

2    On-Demand Broadcasting 

As described above, one of the many possible mechanisms for data dissemination uses on-demand (i.e., 
aperiodic pull) broadcast of data. In a typical scenario, two independent networks are used: a terrestrial 
network for sending pull requests to the server, and a "listen only" satellite downlink over which the server 
broadcasts data to all of the clients. When a client needs a data item (e.g., a web page, database object, 
map, etc.) that it cannot find locally, it sends a request for the item to the server. Client requests are 
queued up (if necessary) at the server upon arrival. The server repeatedly chooses an item from among these 
requests, broadcasts it over the satellite link, and removes the associated request(s) from the queue. Clients 
monitor the broadcast and receive the item(s) that they require. 

2.1    Scheduling with RxW 

In a large-scale implementation of such a system, an important consideration is the scheduling algorithm that 
the server uses to choose which request to service from its queue of waiting requests. We have developed a 
novel on-demand broadcast scheduling algorithm, called RxW [Akso98a], which is a practical, low-overhead 
and scalable approach that provides excellent performance across a range of scenarios. 

The intuition behind the RxW scheduling algorithm is to provide balanced performance for hot (pop- 
ular) and cold (not so popular) pages. This intuition is based on our observations of previously proposed 
algorithms, which failed because they favored one class of items over the other, or because they were too 
expensive to be used in a real system. The RxW algorithm schedules the page with the maximal RxW 
value where R is the number of outstanding requests for that page and W is the amount time that the 
oldest of those requests has been waiting for the page. Thus, Rx W schedules a page either because has many 
outstanding requests or because there is at least one request that has waited for a long time. 

The search algorithm is made efficient by using two sorted lists of requests (one ordered by R values and 
the other ordered by W values) threaded through the service queue. The algorithm prunes the search space 
by alternating between the two lists, each time, bounding the search on the other list. When the limit on 



one of the lists is reached, the page with the maximal RxW has been found and can be broadcast. In our 
experiments, this pruning technique was found to reduce the size of the search space by over 70%. 

We also developed an approximation-based version of the algorithm to provide even further reductions 
in scheduling time with only minimal impact on scheduling quality. By varying a single parameter this 
algorithm can be tuned from having the same behavior as the RxW algorithm described previously, to being 

a constant time approach. 

We implemented RxW and its approximate version on our dissemination toolkit. Experiments with the 
toolkit verified the effectiveness and efficiency of RxW and showed that for our particular configuration the 
approximate version was able to significantly outperform the full version, providing fast scheduling while 

still producing a high-quality broadcast schedule. 

2.2    Data Staging 

While the RxW algorithm is a practical approach to on-demand broadcast scheduling, it like all previous work 
on broadcast scheduling, does not account for the need to obtain the items before they can be broadcast. 
In many large-scale applications data may not be available immediately when required by the scheduler. 
There are many applications that involve large amounts of data that cannot be cost-effectively Stored in 
main memory. Furthermore, in a wide-area distributed system such as the WWW the data to be broadcast 
is likely to reside at a remote site. In either case, data items must be retrieved and brought into the server s 
main memory before they can be broadcast. The need to fetch data from various locations produces large 
variance in service times, which can destroy the performance of traditional scheduling heuristics. Thus, a 
communications-centric approach that ignores data management issues can result in significant degradation 
of broadcast efficiency. For this reason, we have investigated the coordination of broadcast scheduling with 
the management of the data items to be broadcast. We refer to this integrated functionality as data staging. 

We have developed three complementary approaches to data staging All three approaches exploit the 
information on page popularity that is maintained by RxW and have been integrated with RxW in our 
dissemination testbed. The three data staging approaches are the following: 

. Opportunistic Scheduling: In a large-scale broadcast system, broadcast bandwidth is the key shared 
resource, and thus, it is crucial utilize it to the fullest extent. It is a well-known property of broadcast 
scheduling that the optimal allocation of bandwidth to items is proportional to the ratio of^the square 
roots of their access probability. The practical implication of this is that the broadcast effectiveness 
is not greatly effected by small deviations from its optimal allocation. We exploit this property by 
sometimes broadcasting sub-optimal, but memory resident data items, while the scheduled items are 
being brought into the server's cache. We have developed three alternative approaches for choosing 

these alternative items to be broadcast. 

• Caching: An obvious way to reduce the need for fetching data items is to make the best use of the 
available memory space on the server. The key to successful caching is to retain those items that are 
most likely to be scheduled. The RxW algorithm is able to provide very good hints for differentiating 
between hot and cold items. We exploit this property to make intelligent caching decisions. 

• Prefetching: Another method to reduce access latency is to predict which items will be broadcast in 
the near future and bring them into the cache before they are actually scheduled for broadcast. Since 
it is the responsibility of the caching policy to keep hot items available, prefetching focuses only on 
cold items, which are not likely to be in the cache. The RxW algorithm can help identny cold items 

that are likely to be broadcast in the near future. 

Our performance experiments using both synthetic workloads and WWW server traces have shown that 
data staging concernsZe indeed crucial, and that these approaches are effective (to varying extents) in 
providing substantial performance improvements for on-demand broadcast. 



3    Self-Adaptive User Profiles for Large Scale Data Delivery 

User profiles, which encode the data needs and interests of users, are lie at the heart of any dissemination- 
based information systems. i,From the user's viewpoint, a profile provides a means of passively retrieving 
relevant information. A user can submit a profile to a push-based system once, and then continuously 
receive data that are relevant to him or her in a timely fashion without the need for submitting the same 
query over and over again. This automatic flow of relevant information helps the user keep pace with the 
ever-increasing rate of information generation. From the system point of view, profiles fulfill a role similar 
to that of queries in database or information retrieval systems. In fact, profiles are a form of continuously 
executing query. In a large data dissemination system, the storage and access of user profiles can be be 
resource-intensive. Additionally, given the fact that user interests are changing over time, the profiles must 
be updated accordingly to reflect up to date information needs. 

We have developed an algorithm called Multi-Modal (MM), for incrementally constructing and maintain- 
ing user profiles for filtering text-based data items [Ceti99]. MM can be tuned to tradeoff effectiveness (i.e., 
accuracy of the filtered data items), and efficiency of profile management. The algorithm receives relevance 
feedback information from the users about the documents that they have seen (i.e., a binary indication of 
whether or not the document was considered useful), and uses this information to improve the current profile. 
One important aspect of MM is that it represents a user profile as multiple keyword vectors whose size and 
elements change dynamically based on user feedback. 

In fact, it is this multi-modal representation of profiles which allows MM to tradeoff effectiveness and 
efficiency. More specifically, the algorithm can be tuned using a threshold parameter to produce profiles 
with different sizes. Let us consider the two boundary values of this threshold parameter to illustrate this 
tradeoff: When the threshold is set to 0, a user profile is represented by a single keyword vector, achieving 
an extremely low overhead for profile management, but seriously limiting the effectiveness of the profile. At 
the other extreme, if the threshold is set to 1, we achieve an extremely fine granularity user model, however 
the profile size equals the number of relevant documents observed by the user, making it impractical to store 
and maintain profiles. Therefore, it is more desirable to consider intermediate threshold values which will 
provide an optimal effectiveness/efficiency tradeoff for a given application. 

We evaluated the utility of MM by experimentally investigating its ability to categorize pages from the 
WWW. In particular, we tested its ability to learn (human-generated) categories provided by the Yahoo! 
index. Our focus was on the tradeoffs between profile sizes and effectiveness (using non-interpolated average 
precision as our primary effectiveness metric). The evaluation demonstrated that MM can achieve signif- 
icantly higher precision values with only a modest increase in profile sizes. Additionally, MM was able to 
achieve precision values with small profiles that were comparable to, or in some cases even better than those 
obtained with maximum-sized profiles. The details of the algorithm, experimental setting, and the results 

are discussed in [Ceti99]. 

4    Information Quality Metrics 

A subproject of this work has investigated the connections between data dissemination policy and task 
utility. While there are various quality metrics that can be gathered directly on an information stream, 
those metrics might not translate directly into the "quality" with which an information-dependent task is 

performed. 

One of the aims of the subproject was to gain insight on how the intuitive notion of the "importance" 
of an information stream can be translated into a lower-level system control policy. Some proposals that we 
saw put forward in the BADD implementation effort, such as interpreting importance as straight priority, 
seemed to have unpleasant consequences, such as task starvation. 

To get better qualitative and quantitative handle on task utility, we concetrated on a particular category 
of task namely those that depend strongly on a situation estimate. By "situation estimate", we mean a 
computer-based model of some part of the physical world. Examples of situation estimates might include 



terrain elevation and cover, major lines of communication for vehicles, and location and patterns f™™™ 
of radio broadcast sites. By "stong dependence" of a task on a situation estimate, we mean a task who 
performance directly correlates with the accuracy and currency of the estimate. For example a task  o detect 
when red-force vehicles cross a certain boundary could strongly depend on an estimate of vehicle tracks. 

One result of our analysis of utility of information streams for such tasks is the recognition that utility 
cannot simply be assigned to individual information items in a stream. There are several reasons that ut lity 
can't be aligned to Items in isolation. One is that the effect of losing one item can depend on whether 
other items in the information stream were received at the task site. Losing one report on a vehicle _position 
might have minor effect if reports three seconds earlier and three seconds later were received. On the other 
hand, loss of one information item might render others useless, or of much diminished value For^example 
if two listening stations are reporting the time, bearing and frequency of radio ^^^^X 
from one may make the corresponding report from the other useless for purposes of locating an emitter by 

triangulation. 
In addition, the relative contribution of a given information item might depend on the latency with which 

it is received. A position report on a vehicle will lose value as it is delayed, especially after a subsequent 

report is recieved on the same vehicle. 

Thus, schemes for managing information streams that are based on assigning static values to individual 
information items are likely to result in sub-optimal dissemination policies. Rather, such policies need to be 
evaluated by their effect on an information stream as a whole as it influences task performance. 

To gain a better understanding of these issues, we have begun a simulation effort to evaluate different 
channef-scheduling and item-dropping schemes relative to task performance. As ar' ^Tg^«^ 
sumption, we have approximated task performance by situation estimate accuracy. We essentially measure 
the integral of estimate error over time (so higher scores mean poorer task performance). 

Our initial simulations are looking at different channel-scheduling policies relative to this measure. _We 
have pure-priority, round-robin and weighted-deficit round-robin schedulers running. Initial simulations 

reveal that pure-priority scheduling benefits the task using the ^^^^,^^^'^! 
detriment of all tasks at any lower priority. Round-robin ensures that all tasks get a share £^«*£* 
for their information streams, but fails to reflect relative importance of task. Weighted-deficit round-robin is 
a Ic-called "proportional share" scheduling algorithm, and allows more important streams to receive a larger 
share of resources, while not starving or arbitrarily delaying other streams. 

Currently, different streams are served on a first-come, first-served basis and queues of information items 
can grow without bound. Planned extensions will incorporate dropping policies and reordering of streams. 

5    Channelization 

In a publish-subscribe system, a profile describes a client's interest in a set of data items, and these profiles 
are used by a server (i.e., a data source) to send data to appropriate clients. 

Often, the information that is sent to clients is broken up into a number of channels A channel is a 
tranmission medium with fixed bandwidth over which data can be sent. Typically, chents can listen to a 
cons'aTnS Zt of channels. These channels can be physical manifestations requ nng specialized tuners at 
STSe^oTt«*, satellite systems), or they can be virtual by mutiplexing multiple channels on a single 
phystTchrnnS:\n the case of virtual channels, they provide a way of narrowing the focus of what a client 

must filter. 

5.1    Simulator Structure 

We have constructed two simulation models to study a satellite-based publish-subscribe system. Each model 
has throwing fundamental characteristics. A data source produces updates to data based some update 



distribution with exponential interarrival rates. Clients are each connected to some number of satellite 
channels, and a delivery mechanism uses client profiles to send data source updates on channels so as to 
satisfy all client interests. The delivery mechanism contains three pieces. The first is a Profiler which matches 
updates with profiles to determine whether there exists a client interested in the update. Next, is the Mapper 
that determines the channels on which to send updates based on the channels on which interested clients are 
connected. Last, is the the Scheduler which determines the order in which to send updates. 

The first model looks at two problems. First, how are clients assigned to channels, and second, how are 
updates mapped to channels. 

Client-to-channel assignment is a challenging problem because both client interests and data update rates 
have to be considered while attempting to make efficient use of bandwith. This goal is achieved by trying 
to group clients with similar profiles. The success of an algorithm is measured by the clients getting less of 
what they don't want, and the Mapper making fewer copies of updates. 

Page-to-channel mapping is also an interesting problem. Based on a client-to-channel assignment, the 
Mapper determines on which channels to map updates. The mapping can be either static or dynamic. With 
a static mapping, the channels that a data item is mapped to is fixed. With dynamic mapping, the channels 
that a data item is mapped to is determined when the update is received by the Mapper. The goal of both 
types of algorithms is to minimize the number of channels an update is sent on, and also, to reduce the load 
accross all channels. 

The second model reverses the approach of the first model. Data items are first mapped to channels, and 
based on this mapping clients select channels on which to connect. 

Here, the mapper effectively accomplishes both the task of client-to-channel assignment and page-to- 
channel mapping with one algorithm. The mapper assigns data items to channels based on knowledge of 
profiles and data item update rates. It attempts to cluster profiles so as to minimize the load accross channels 
while also attempting to reduce the number of channels on which each client has to listen. 

Client-to-channel assignment can be done in two ways: the data delivery mechanism can tell each client 
on which channels it should listen, or with a guide of page to channel mappings, each client can select 
appropriate channels. 

5.2    Simulator Measurements 

We use average stateness as our metric of how well we are doing. Average staleness is the difference between 
the time at which the client receives an update minus the time at which the update actually occured 
averaged over all clients that received that update. This represents an average delay for items to work their 
way through the system. An important realization is that once the flow into the system exceeds a given 
rate such that one or more of the queues becomes unstable, our average staleness measurements become 
meaningless. Thus, we use a differential flow rate (DFR) to determine when the system becomes unstable. 
It is the point at which the DFR becomes non-zero that is of interest. In other words, an algorithm that 
delays this point is doing better than one that does not. 

In the first simulation model, we have studied various client-to-channel assignment algorithms. We have 
shown that the choice of an assignment mechanism here is related to the choice of a mapper algorithm at the 
server. We have also studied several server mapping algorithms. One study shows that if D is a measure of 
channel load and C is a measure of the number of copies that are made, an algorithm based on a combined 
metric such as DC outperforms one that considers only D or one that considers only C. 

Both of these simulators are working quite well and provide a good testbed for further study of chan- 
nelization algorithms. This includes algorithms for profile matching, channel assignment, channel mapping, 

and channel scheduling. 
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Abstncl— Recent advances in telecommunications have en- 
abled the deployment of broadcast-based wide-area informa- 
tion services that provide on-demand data access to very large 
client populations. In order to effectively utilize a broadcast 
medium for such a service, it is necessary to have efficient, 
on-line scheduling algorithms that can balance individual and 
overall performance, and can scale in terms of data set sizes, 
client populations, and broadcast bandwidth. In this study 
we introduce a parameterized algorithm that provides good 
performance across all of these criteria and can be tuned to 
emphasize either average or worst case waiting time. Unlike 
previous work on low overhead scheduling, the algorithm is 
not based on estimates of the access probabilities of items, 
but rather, it makes scheduling decisions based on the cur- 
rent queue state, allowing it to easily adapt to changes in the 
intensity and distribution of the workload. We examine the 
performance of the algorithm using a simulation model. 

I. INTRODUCTION 

.4.   On-dtmand Data Broadcast 

Broadcast-based information systems are becoming in- 
creasingly popular due to advances in telecommunications, 
interConnectivity and mobile computing. Compared to tra- 
ditional unicasi data transfer, broadcasting can be much 
more efficient for disseminating information to large num- 
bers of clients in applications where there is a high degree 
of commonality among client interests. With unicast. a data 
item must be transmitted at least once for every client who 
requests it, resulting in scalability problems as the client 
population increases. The World Wide Web has provided 
numerous examples of such situations, such as election re- 
sult servers, sporting event kiosks, stock market tickers, etc. 
The access delays associated with such sites on the WWW 
during periods of heavy use demonstrate the inefficiencies of 
unicast delivery for dissemination-oriented applications. 

The advantage of broadcast for data dissemination is that 
each transmission of an item can satisfy the needs of po- 
tentially many clients. Several forms of data broadcasting 
have already been introduced commercially. Intel has been 
broadcasting data along with normal TV signals [Intel94]. 
Hughes Network Systems is using satellites for delivering In- 
ternet content [DirecPC] and plans to incorporate broadcast 
technology. Broadcasting using cable technology is being 
developed by Hybrid Networks Inc. [Hybrid] and others. 
There has also been tremendous improvement in the band- 
width that is available for data broadcast. For example, 
the Teledesic system is expected to provide bandwidth of 
155.52Mbps up to 1.244Gbps [Teledesic]. 

This work has been partially supported by the NSF under grant IR1- 
9501353, by Rome Labs agreement number F306C2-97-2-0241 under 
DARPA order number F078, and by-re»earch grants from Intel and 
NEC. 

B.  Our Focus 

While broadcast technology continues to advance in terms 
of both ubiquity and bandwidth, improvements in intercon- 
nectivity are fueling explosive growth in the amount of data 
available on-line and the number of clients who wish to access 
that data. In this paper, we focus on scheduling algorithms 
for disseminaüon-orienitd applications in which a large and 
possibly changing client population requests data items from 
an information source equipped with a data broadcasting ca- 
pability. The challenge in developing scheduling algorithms 
for such on-demand data broadcast is to provide scalable per- 
formance that balances average and individual (i.e., worst 
case) responsiveness using the shared broadcast medium. 
Such algorithms must cope with large databases, large client 
populations with dynamically changing interests and compo- 
sition, and with high broadcast bandwidth. 

As indicated by the preceding discussion, a scheduling 
approach for large-scale, on-demand data broadcast must 
balance different requirements. The algorithms that have 
been developed to date (e.g., [Dyke86], [Wong88], [Yaidya96], 
[Su97]) have failed to meet one or more of these needs. 
Some approaches have used simple scheduling policies such 
as FCFS (First Come First Served), which provide average 
case performance that is significantly lower than what could 
be supported by the broadcast medium. More sophisticated 
approaches aimed at providing better performance have been 
based on assumptions that limit their applicability, such as 
assuming very small database sizes, static data access prob- 
abilities (thereby limiting the ability to adapt to changing 
client needs), and/or ignoring the overheads associated with 
making intelligent scheduling decisions. 

A key element that has been missing from the previous 
work is a comprehensive set of metrics for on-demand data 
broadcast in large-scale data dissemination environments. In 
this paper, therefore, we first outline the performance crite- 
ria that must be addressed by such scheduling algorithms. 
These criteria include: average and worst case performance, 
scheduling overhead, and robustness in the presence of cer- 
tain environmental changes. We show how existing algo- 
rithms fail to meet one or more of these criteria. 

We then define a parameterized algorithm, called RxW, 
that performs well for all of these metrics and furthermore, 
can be tuned to focus on scheduling overhead, average wait- 
ing time, or worst case wait time according to the needs of 
a particular application. RxW is robust to changes in the 
client population and workload because it makes scheduling 
decisions based only on the current queue state, rather than 
depending on estimates of data item access probabilities. 

10 



Til«1 remainder of llie paper is structured as follows. In Sec- 
tion II we give a brief description of the problem and define 
the important criteria for evaluating scheduling algorithms 
for large-scale broadcast. We then describe how previously 
proposed algorithms measure up to these criteria. In Sec- 
tion III we develop several variants of a new algorithm, called 
i?j!V. which has low overhead and provides good average 
and worst case performance. Section IV presents an evalua- 
tion of the algorithm in terms of its performance, scalability, 
and robustness to workload changes. Section V discusses 
related work. Finally. Section VI presents our conclusions. 

II. BACKGROUND 

A. Environment 

In this section we present a simple satellite-based broad- 
cast scenario to motivate the scheduling problem we are 
addressing. In this scenario (depicted in Figure 1) clients 
use two independent networks for communicating with the 
server: a terrestrial network for sending requests to the 
server, and a "listen only" satellite downlink to receive data 
from the server, similar to Hughes Network System's Di- 
recPC architecture [DirecPC] and other satellite data ser- 
vices. When a client needs a data item (e.g., a web page or 
database object) that it cannot find locally, it sends a request 
for the item to the server. Client requests are queued up (if 
necessary) at the server upon arrival. The server repeatedly 
chooses an item from among these requests, broadcasts it 
over the satellite link, and removes the associated request(s) 
from the queue. Clients monitor the broadcast and receive 
the item(s) that they are waiting for. 

jip jzp c,,„„ jip 
Fig. 1.   Example Data Broadcasting Scenario 

The focus of this paper is on the scheduling algorithm used 
by the server to choose the item to broadcast among those 
that have been requested. Because a single broadcast of an 
item satisfies all of the outstanding requests for the item, a 
good scheduling algorithm has the potential to peatly im- 
prove the effectiveness of the broadcast. 

Similar to the previous work on broadcast scheduling 
we make the following assumptions about the environment. 
First, we assume that data items are fixed-length (e.g., 

database pages) so that the broadcast bandwidth can be di- 
vided into equal length, item-sized "slots". In the remainder 
of the paper, we refer to such fixed-sized items as "pages" 
and we refer to the length (in time) of a broadcast slot as a 
broadcast tick and use such ticks as the unit, of time measure.1 

Second, we assume that clients continuously monitor the 
broadcast after they make a request and we do not consider 
the effects of transmission errors, so that all clients that are 
waiting for an item receive that item when it is broadcast by 
the server. Finally, we ignore the delay for sending requests 
via the client-to-server uplink, which we expect to be small 
compared to the latency of obtaining broadcast items from 
a moderately or heavily loaded server. 

B.  Performance Issues 

Given the application environment described so far, we can 
now state our criteria for evaluating broadcast scheduling 
algorithms for large-scale data dissemination. 

B.l Responsiveness 

The success of a scheduling algorithm is determined by its 
ability to get requested data to the clients quickly. In this 
regard, the first important metric, average waiting time is 
the amount of time on average, from the instant that a client 
request arrives at the server, to the time that the requested 
item is broadcast. Second, worst case waiting time is the 
maximum amount of time that any client request will have 
to wait in the service queue to be satisfied. 

B.2 Scheduling Overhead 

Because of the requirement for scalability, a key aspect of 
this study is the consideration of scheduling overhead at the 
server. Overhead is examined in two categories: 

1. Request Processing- When a new request arrives at the 
server, the server must quickly decide whether or not 
to place an entry in the request queue for the requested 
item and/or update and possibly restructure the queue 
contents. The speed of such processing limits the rate at 
which requests can be processed by the server, effectively 
placing a limit on the scalability in terms of request 
arrival rate (e.g., number of clients supported). 

2. Scheduling Decisions - On every broadcast tick the 
server must choose a page to broadcast. If the de- 
cision overhead is excessive the server may not be able 
to support the increased broadcast bandwidth or larger 
database sizes. 

The two types of scheduling overhead are related: for ex- 
ample, doing extra work when requests arrive (e.g., keeping 
sorted lists of page access probabilities) can reduce the cost 
of making scheduling decisions at the expense of an increased 
cost for processing requests. The proper trade-off between 
these costs is dictated by the types of scalability that are 
important for a particular environment. 

'The fixed length assumption simplifies the algorithm descrip- 
tions and analysis. Recent work in broadcast scheduling has shown 
how to extend scheduling algorithms to incorporate variable-length 
items [Vaidya96], [Su97]. 
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B.3 Robustness 

In order to achieve the goals of responsiveness and scalabil- 
ity, a scheduling algorithm will typically employ approxima- 
tions and/or heuristics. Such heuristics must not be based on 
static information that will cause the algorithm to perform 
poorly if the workload or the environment changes. 

C. Previous AlgorUhms 

As stated in the Introduction, several algorithms for on- 
demand broadcast scheduling have been proposed previously. 
In this section, we describe existing algorithms and discuss 
their limitations with respect to the criteria that were out- 
lined in the preceding section. Dykeman et al. [Dyke86] stud- 
ied on-line scheduling algorithms, and were the first to point 
out that traditional FCFS scheduling would provide poor 
average wait time for a broadcast environment when the ac- 
cess distribution for data items was non-uniform. They pro- 
posed several algorithms aimed at providing improved per- 
formance. The algorithms studied in [Dyke86] (and later 

described in   [Wong88]) are the following: 
. First Come First Served (FCFS): broadcasts the 

pages in the order they are requested. 
. Most Requests First (MRF): broadcasts the page 

with the maximum number of pending requests. 
. Most Requests First Lowest (MRFL): is essentially 

same as MRF. but breaks ties in favor of the page with 
the lowest access probability. 

. Longest Wait First (LWF): selects the page that has 
the largest total waiting time, i.e., the sum of the time 
that all pending requests for the item have been waiting. 

Figure 2 plots the average waiting time (in broadcast ticks) 
for a workload with a database of 10000 pages. Client, re- 
quests for pages are generated using a Zipf distribution of 
maximum skewness (parameter 0=1). The results were 
generated using the simulation environment and default pa- 
rameters that we will describe in Section IV. As in [Dyke86], 
the overheads associated with running the scheduling algo- 

rithm at the server are not modeled here. 

E 
1= 

Fig. 2. 
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Average Wait Time for Algorithm» of Dykeman et al. 

As can be seen in the figure, the best performance over- 
all in this case  is provided by LWF. As would be expected, 

the average wait time increases for all algorithms as more 
requests are introduced. Perhaps less predictably, however, 
the average response time eventually levels off and becomes 
insensitive to additional load. At this point, the remaining 
algorithms are approximately 2.5 times slower than LWF. 
Unfortunately, LWF is not. a practical algorithm for a large 
system, as at each broadcast tick, it recalculates total accu- 
mulated wait time for euerypage with pending requests in or- 
der to decide which page to broadcast. For a high-bandwidth 
system with a large database, such a scheduling algorithm 
would likely become a bottleneck.2 MRF and MRFL algo- 
rithms were introduced as lower-overhead alternatives. 

The results of Figure 2 agree with those of [Dyke86], 
[Wong88] except for two key points. First, the earlier work 
did not investigate the performance of the algorithms under 
very high loads, so it did not identify the flattening of the 
performance curves for all of the algorithms under high load. 
Second, in the earlier study MRFL was seen to provide a 
performance between that of FCFS and LWF. Thus, MRFL 
was proposed as a lower-overhead replacement for LWF. In 
contrast, our results show that MRFL has poor performance 
relative to LWF and thus, is not a reasonable replacement. 
The differences in the conclusions stem from the fact that 
the earlier study was performed using a very small database 
(100 items, compared to 10000 in Figure 2). As the size of 
the database increases, the probability of having a tie for the 
largest number of requests diminishes. Without ties, MRFL 
degenerates to MRF, and has relatively poor performance. 

The poor performance of MRFL for larger systems has 
also recently been shown by Su and Tassiulas [Su97]. In that 
paper, they propose an alternative algorithm, called PIP-0.5 
(Priority Index Policy), that performs as well as LWF in av- 
erage wait time. Unlike LWF, PIP-0.5 can be implemented 
with an 0(1) complexity for choosing the next page to broad- 
cast. PIP-0.5 falls short of our performance criteria, because 
it is based on estimates of the probability of access for each 
item. As a result, its usefulness is limited to fairly stable 
environments where those probabilities do not often change 
significantly. Furthermore, the history mechanism that must 
be employed to obtain such probability estimates can re- 
sult in additional overhead, particularly for very large data 
sets. Algorithms based on access probabilities and broadcast 
histories have also been proposed by Vaidya and Hameed 
[Vaidya96]. These algorithms have similar performance to 
the PIP-0.5 algorithm, and also share that algorithm's limi- 
tations in terms of robustness to changing workloads. 

III. RxW: A PARAMETERIZED ALGORITHM 

We now describe a new broadcast scheduling algorithm, 
called RxW, which is a practical, low-overhead, scalable ap- 
proach that provides excellent performance across a range of 

scenarios. 

JIn our implementation of LWF, we found that using one processor of 
a DEC Alpha 2100 4/275 server and assuming a broadcast bandwidth of 
155.52 Mbps, the LWF algorithm became a bottleneck with a database 
size of 5543 8KByte pages. 
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A.  Intuition 

The results shown in Figure 2 demonstrated that MRF 
and FCFS have poor average case performance compared to 
the higher-overhead LWF algorithm. Probing more deeply 
into their performance in this case leads to a very important 
observation. Figures 3(a) and 3(b) show the performance of 
the three algorithms for the 109? most popular pages in the 
database (i.e.. the •'hot" pages), and the remaining 90% of 
the pages (i.e.. the "cold" pages) respectively.3 

As can be seen in the figures. MRF provides the lowest 
waiting time for hot pages, but its performance for cold 
pages is by far the worst of the three algorithms. In con- 
trast, FCFS provides similar performance for both classes 
of pages leading it to have the worst performance for hot 
pages and the best for cold pages of the three. MRF chooses 
the page with the highest number of outstanding requests, 
so that requests for infrequently accessed pages must wait 
until sufficient requests have arrived. Since MRF is not a 
starvation-free algorithm; it is quite possible that a request 
for a very cold page is never satisfied. In contrast, FCFS is 
a fair algorithm in which the maximum time a request must 
wait is the same for all pages. This behavior causes it to 
spend more bandwidth on requests for cold pages. The fact 
that both algorithms favor one class of pages over the other 
results in their both having poor performance on average. In 
contrast. LWF provides good performance for both types of 
pages, resulting in better average performance overall. Based 
on these observations, we set out to combine the two low- 
overhead approaches (MRF and FCFS) in a way that would 
balance their strengths and weaknesses and provide a more 
even-handed treatment of hot and cold pages. 

B. Scheduling with RxW 

B.l The Exhaustive Algorithm 

We have developed a new scheduling algorithm called 
RxW (Requests times Wait), which provides good perfor- 
mance by combining the benefits of MRF and FCFS in a 
way that ensures scalability by having low overhead. RxW 
broadcasts a page either because it is very popular or because 
it has at least one long-outstanding request. 

RxW maintains a service queue structure with a single 
entry for each page that has outstanding requests. Entries 
contain a page identifier (PID), the count of the number 
of outstanding requests (REQcnt), and a time-stamp of 
the earliest unsatisfied request for the item (IstARV). This 
structure is hashed on PID. 

The exhaustive algorithm works as follows: When a re- 
quest arrives at the server, the server performs a hash look 
up to find the entry of the requested page. If it finds an 
entry, then it simply increments the REQcnt for that entry. 
If no entry is found, then a new one is created with REQcnt 
initialized to 1, and IstARV initialized to the current time. 
At each broadcast tick, the server chooses to broadcast the 
page with the largest value of (Ä * W) with R = REQcnt 

'Recall that the popularity of the pages for this case were generated 
according to the Zipf distribution. 

and W = c/oot-lstARV. where clock is the current time 
in broadcast ticks. The entry for this page is then removed 
from the structure. The exhaustive algorithm finds the page 
with the maximum value by simply performing a linear scan 
of all the entries. Note that the queue size is limited by 
N, the number of pages in the database. Thus, the exhaus- 
tive RxW algorithm is similar in overhead to other proposed 
O(N) algorithms, such as [Vaidya96]. Note however, that 
Axil' makes decisions based only on the current state of 
outstanding requests, and does not depend on estimates of 
page access probabilities. A detailed analytical study of the 
average waiting time and the limiting behavior of RxW is 
provided in [Aksoy97]. 

B.2 The Pruning Algorithm 

As with other O(N) scheduling algorithms, the overhead of 
RxW scheduling can be reduced by performing more work 
during request processing in order to keep the request in- 
formation better organized. In order to avoid searching the 
entire list of pages with outstanding requests, we thread two 
sorted lists through the request queue structure: The Wait 
list is simply a FCFS queue based on IstARV in ascend- 
ing order; the second list is the Requests list, which is kept 
sorted in descending order by REQcnt. 

The Wait queue is maintained by simply appending a re- 
quest entry to it when a request arrives for a page with no 
outstanding requests and removing a page's entry when the 
page is broadcast. The Requests list is maintained each 
time a request is received. This maintenance involves mov- 
ing the affected entry to the proper place in the sorted list. 
We introduce an additional structure to speed up the mainte- 
nance process and to guarantee scalability in request arrival 
rates. This structure, called the "REQcnt index" contains 
pointers to each cluster of REQcnt value, i.e. all pages 
that have the same number of pending requests. Values are 
added to and removed from this index as the request struc- 
ture evolves. Using this index, request processing is an 0(1) 
operation (note that for any one request, an entry moves 
exactly one cluster up in the Requests list). 

TOP (Requnu) 
mmri  ( '//A . portton       ? '////. 

Isfrxi (Rmqurats) 

limit (REQcnt) \ / 

\ /  * 

3 
TOP(Waii) 

/sftrjct (Wait) 

KX 
limit (lilARV) 

SS, 
Fig. 4.   Pruning the Search Space 

The two sorted lists, (Requests and Wait), are used to 
prune parts of each list where there is no possibility of con- 
taining the entry with the highest RxW value. This pruning 
technique is depicted in Figure 4. Note that nodes connected 
by a dashed line belong to a single service queue entry. On 
the left is the Requests list, ordered by descending REQcnt 
and on the right is the Wait queue, ordered by ascending 
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Fig. 3.   Average Waiting Time for Hot and Cold Page Requests 

IstARV. When an entry is examined from the Requests 
queue, it is known that all entries not yet scanned have a 
REQcnt field that is less than or equal to that of the entry. 
Thus, if the recently examined entry has values REQcnt' 
and IstARV. the only way for a remaining entry to beat 
the current maximum RxW value seen so far (MAX), is if 

clock- IstARV > 
MAX 

REQcnt' 

where clock is the current time. Thus, the entries that must 
be searched on the Wait queue are bounded by: 

MAX   . 
Hmit{\siARV) = min{lstARV,clock- REQcnt,> 

The same kind of pruning can be applied on the Requests 
list by scanning entries on the Wait queue. The pruning 
algorithm starts from the top of the Request list (thereby 
truncating the Wait queue) and then examining the top of 
the Wait queue (thereby truncating the Requests list) and 
alternating until the search reaches the bottom of one of the 
(truncated) lists. Note that the stopping condition is checked 
merely by comparing the limit values, rather than actually 
maintaining a pointer to the exact boundary on the list. 

This mechanism prunes the search space while still guaran- 
teeing that the search will return the page with the maximum 
RxW value. Thus, in the performance study that follows, we 
ignore the exhaustive algorithm and use the term "RxW al- 
gorithm" to refer to this pruning variant. 

B.3 Approximation for Speed Up 

Scheduling based on the highest RxW value makes effi- 
cient use of broadcast bandwidth. Such efficiency, however, 
comes at a price in terms of the overhead that is incurred 
at each schc-duliii6 JeJsiuu. \= stated in Section II-B, such 
overhead can ultimately limit scalability in terms of support- 
able bandwidth or database size. The pruning technique for 
RxW aims to reduce this overhead. As will be shown in 
Section IV-C, this technique is indeed effective — for exam- 
ple, in the main workload of our experiments this pruning 

resulted in a 72% savings in terms of the number of entries 
searched in order to find the maximum ÄxW-valued page. 
While such a substantial savings is helpful, it is probably not 
sufficient to keep the scheduling overhead from ultimately be- 
coming a limiting factor as the system is scaled to the huge 
applications that will be enabled by the national and global 
broadcasting systems currently being deployed. 

Based on insight gained from early experiments with the 
RxW algorithm, we realized that the scheduling overhead 
can be reduced dramatically by backing off from the re- 
quirement of maximality for the RxW value when making 
scheduling decisions. We have developed an approximate, 
parameterized variant of RxW that allows the search space 
to be reduced further, at the possible expense of making less 
efficient use of the broadcast bandwidth. By varying a sin- 
gle parameter, the algorithm can be tuned from having the 
same behavior of the RxW algorithm described so far, to a 
constant time approach that provides maximal scalability. 

The parameterized version of RxW is based on two in- 
sights about RxW scheduling. First, we found that with 
highly skewed access patterns (as would be expected in many 
dissemination-oriented applications), the page with the max- 
imum RxW value is typically found very near the top of at 
least one of the two lists (Requests or Wait). As a re- 
sult, even the pruning-based RxW algorithm can spend sub- 
stantial resources examining entries after it has already en- 
countered the maximum-valued entry. The second insight is 
that given a static workload (i.e., in terms of request arrival 
rate and access probability distribution) the average RxW 
value of the page chosen for broadcast typically converges 
to some value. This latter insight is exploited to create a 
self-adapting approximation algorithm based on the RxW 
value of the most recently broadcast page. We take care, 
however, to ensure that the approximation works well even 
in the presence of a changing workload. 

The approximation algorithm requires a single parameter 
called accuracy, which can be set to any value, 0 or greater. 

* Typically the accuracy parameter will be set to a value between 0 and 
1. Larger values can be used, however. In the limit, setting accuracy 
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Scheduling works as follows: First, the algorithm maintains 
a self-adapting threshold, which is updated on every broad- 
cast tick by averaging the current threshold value with the 
RxW value of the page that was chosen to be broadcast on 
that tick. To find the next page to broadcast the request 
structure is searched as in the regular (pruning) RxW al- 
gorithm, but rather than searching for the page with the 
maximal RxW value, the algorithm chooses the first page it 
encounters whose RxW value that is greater than or equal 
to accuracy x threshold. If no such page is found, then the 
algorithm acts like the regular RxW algorithm and returns 
the page with the maximum RxW value. 

The setting of the accuracy parameter determines the per- 
formance tradeoffs between average waiting time, worst case 
waiting time, and scheduling overhead. The smaller the value 
of the parameter, the fewer entries are likely to be scanned. 
At an extreme value of 0. the algorithm simply compares the 
top entry from both the Requests list and the Wait queue 
and chooses the one with the highest RxW value. In this 
case, the complexity of making a scheduling decision is re- 
duced to 0(1), ensuring that broadcast scheduling will not 
become a bottleneck regardless of the broadcast bandwidth, 
database size, or workload intensity. In the following sec- 
tion, we examine the performance tradeoffs of several settings 
for the accuracy parameter. We refer to the approximation- 
based RxW algorithms as RxW.a, where a equals the value 
of the accuracy parameter as a percentage (e.g., an a setting 
of 0.80 is called tfxU'.MÜ). 

IV. EXPERIMENTAL RESULTS 

A.  Simulation Environment 

Our experiments were performed using a simple simulation 
model of the system using CSIM [Schw86]. As with previous 
studies, the model is intended to capture only the quality of 
the schedule produced by the given scheduling algorithms. 
As such, it does not include the overheads of scheduling and 
request processing at the server. These costs have been de- 
scribed in the previous sections and are addressed in the 
scalability portion of the experiments (Section IV-C). Also 
in keeping with earlier studies, we do not model the costs of 
using the back-channel for sending requests from the clients 
to the server as these costs will be the same for all of the 
scheduling algorithms.5 The broadcast channel is modeled 
as a server with a fixed rate of broadcast. We do not specify 
an absolute value for this rate, but rather, use broadcast ticks 
as our measure of time. This approach emphasizes that the 
results are not limited to any particular bandwidth and/or 
data item size, but rather, that they describe fundamental 
tradeoffs among the algorithms. 

In the model, the client population is represented by a sin- 
gle request stream. The client population model generates 
non-blocking requests with exponential inter-arrival times 

to oo results in the approximate algorithm behaving identically to the 
regular pruning-based RxW algorithm. 

'The COM of back-channel requests becomes more important when 
trading off between server push and client pull over the broadcast as 
in [Acha97]. 

with mean A. We use an open system model since our work is 
aimed at supporting extremely large, highly dynamic client 
populations, and such client populations cannot be realisti- 
cally modeled with a closed simulation system. The request 
pattern is shaped with a Zipf distribution [KnuthSl]. This 
is a frequently used distribution for non-uniform data access. 
It produces a'ceess patterns that become increasingly skewed 
as its 6 parameter increases from 0 (uniform access proba- 
bility) to 1 (highly skewed). The offset and freq parameters 
are used to simulate interest shifts of the client population 
and the frequency of such shifts. The parameters and their 
settings are summarized in Table I. 

B. Responsiveness 

In the first experiment, we examine the responsiveness of 
several variants of the RxW algorithm, and compare them 
to the LWF and FCFS algorithms of Dykeman et al. As 
stated previously, the results we present here are measures 
of the quality of the scheduling choices made by the various 
algorithms, and do not take into account the overhead of 
scheduling and request processing. Under such assumptions, 
LWF (and similar algorithms such as PIP-0.5) have provided 
the best average case performance in previous studies. We 
report results for four variants of RxW: The pruning algo- 
rithm and the approximate algorithm with a values of 0.90, 
0.80. and 0 (referred to as RxW.90, RxW .80, and RxW .0, 
respectively). Recall that RxW.Q examines only the top en- 
try of each the two sorted lists of requests, and thus, makes 
scheduling decisions in constant time. The four variants of 
RxW allow us to investigate the tradeoffs between the exact 
and approximate approach, among the various a settings. 

In Figure 5(a), we plot the average waiting time for each 
scheduling algorithm, as the mean request arrival rate is var- 
ied from 1 per tick to 1000 per tick along the x-axis (shown 
with a log scale). All algorithms exhibit similar performance 
here, with the average wait time increasing but ultimately 
leveling off as the request arrival rate is increased. This 
leveling off is a characteristic of broadcast data delivery to 
clients with shared interests and differs dramatically from 
what would be expected in a unicast environment. 

Comparing the six algorithms, it can be seen that LWF 
and the RxW algorithm provide the best average perfor- 
mance (RxW even does slightly better for loads between 5 
and 50 requests/tick). The good performance of RxW in this 
case demonstrates that the scheduling decision metric used 
by RxW is a reasonable substitute for that of LWF (the to- 
tal waiting time), and even for perfect knowledge of access 
probabilities (as used by PIP-0.5, which ahso has similar per- 
formance to LWF). By far the slowest average performance 
in this case is provided by FCFS. As described in Section III- 
A, for a sufficiently loaded system FCFS allocates the same 
bandwidth to all accessed pages, regardless of their popular- 
ity, resulting in poor utilization of the broadcast. 

The results for the approximate RxW algorithm show that 
as the Q parameter, which sets the accuracy for the broad- 
cast schedule, is decreased the average wait time increases. 
For all three of the values shown, however, the performance 
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Svmbol Description Default Range Unit 

dhSi:e Database Size 10000 [100-50000J pages 

X Mean Req Arv (exp) 100 [1-1000] requests/tick 

e Request Skew (zipf) 1.0 [0.0-1.0] - 

0 Approximation Accuracy - 0, 0.80, 0.90 - 

offset 
fnq 

Shift in Interest 0 [0-5000] number of pages 

Interest Shift Freq n/a [1-100000] / 100000 broadcast ticks 

TABLE I 

SIMULATION MODEL PARAMETERS 

5000 

4500 

LWF 
RxW —-X- 

RxW.90 •—E3-- 
Rxw.ao --© 

RxW.O --^- 
"FCFS"  1— 

E 

10 100 1000 

Req. Arrival Mean (requests/broadcast tick) 

(a) Average 

Fig. 5.   Responsiveness Measures 

10 100 1000 

Req. Arrival Mean (requests/broadcast tick) 

(b) Worst Case 

is significantly better than that of FCFS. The approximate 
algorithm with an o value of 0.90 remains less than 10% 
slower than the maximal algorithm. Even the constant-time 
RxW.O pays less than a 33% penalty compared to the max- 
ima! algorithm in the most extreme case here. 

Figure 5(b) shows the worst case waiting time measured 
for the same experiment as Figure 5(a). That is, we plot 
the longest measured wait for any request that occurs dur- 
ing the simulation run. Note that the simulation was run 
one million broadcast ticks, so each page was broadcast at 
least several times. Although worst case performance has 
not been addressed by previous studies, it is an important 
metric for many applications. As can be seen in the figure, 
the ordering of the algorithms for worst case behavior is in- 
verted compared to the average case. FCFS has the shortest 
worst case waiting time. In fact, once a page has been re- 
quested, it is guaranteed to be scheduled for broadcast before 
any other page is broadcast twice. Thus, its worst case be- 
havior is bounded by the number of pages (10,000 in this 
case). In contrast, the LWF and RxW algorithms make no 
such guarantees — popular pages may be broadcast multiple 
times while requests for a less popular page are waiting. 

For the approximate RxW algorithm, a serves as a knob 
for adjusting the worst case waiting time in the opposite 
direction of how it works for the average case. As a is de- 
creased, the FCFS queue begins to play a larger role m the 
scheduling process, and thus, the behavior begins to look 
more like FCFS. As a result, for a - 0, the worst-case behav- 
ior is within 15% of that of FCFS. Comparing Figures 5(a) 
and (b), it is apparent that the a parameter provides a flex- 

ible mechanism for trading-off worst case and average case 
waiting times for a particular application environment, and 
that it can also be set to balance both concerns reasonably 
well (e.g., a = 0.80 in this case). In the next section we 
show that a can also be used to adjust the overhead of the 
scheduling decision process in order improve scalability. 

C. Scheduling Overhead 

As described previously, a critical aspect of scheduling 
algorithms for large-scale data broadcasting is scalability. 
The previous section focused on the performance of the al- 
gorithms in an ideal setting where there was no overhead 
for making scheduling decisions or processing requests. In 
practice, however, such concerns can limit the ability for on- 
demand systems to support large applications. As described 
in Sections II-C and III, all of the algorithms are fairly effi- 
cient in terms of request processing. They differ significantly, 
however, in terms of scheduling overhead. In this section we 
examine the question of scheduling overhead in more detail. 

Figures 6(a) and (b) show the average number of request 
queue entries searched each time a scheduling decision is to 
be made (i.e., on each broadcast tick), as the request arrival 
rate and the database size are increased, respectively. Fig- 
ure 6(a) corresponds to the same settings as the previous two 
graphs; that is, the database size is fixed at 10,000 pages and 
the request arrival rate is varied from 1 to 1000 requests/tick. 
As can be seen in the figure, LWF is by far the most expen- 
sive of the algorithms shown for making scheduling decisions, 
followed by the maximal RxW. Also, it can be seen that the 
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Fig  6.   Scheduling Overhead Measures 

approximate version of ArIV provides tremendous savings.6 

LWF is an exhaustive algorithm, and under high loads, 
there is at least one pending request for each data page. 
Thus, the scheduling cost of LWF is proportional to the num- 
ber of distinct pages that are accessed by the client popula- 
tion, namelv 10.000 pages in this case. For a fast broadcast 
bandwidth and/or large database size, the scheduling over- 
head of LWF could easily become a bottleneck. The maximal 
RxW algorithm, on the other hand, examines significantly- 
fewer queue entries for each scheduling decision. In this case, 
it examines 2729 entries on average at a load of 1000 re- 
quests/tick: a savings of about 72.79J. It is important to note 
that as was shown in Figures 5(a) and (b). these savings in 
search complexity come at no cost in broadcast efficiency. 

The savings provided by ÄxlV's pruning algorithm, how- 
ever, are dwarfed by the tremendous savings provided by 
the approximate version of the algorithm. In figure 5(a) at 
a load of 1000 requests/tick, RxW .90 and RxW M exam- 
ine 116 and 39 entries respectively, for savings of more than 
98.8% and 99.6% respectively. With a set to 0, the approx- 
imate algorithm scans only two entries providing maximum 
scalability in terms of search overhead. 

Figure 6(b) shows even more striking results for the 
same algorithms, when the request rate is fixed at 100 re- 
quests/tick and the database is scaled from 1 to 50,000 pages. 
The overhead of LWF grows linearly with the database size, 
approaching the limit of one entry per page. The overhead 
of maximal RxW also grows linearly, but at a much slower 
rate. Finally, similarly to part (a) of the figure, the over- 
head of the approximate algorithms grows much more slowly, 
with RxW.O remaining constant. The practical impact of 
these results is that the approximate RxW algorithm pro- 
vides tremendous scalability in terms of request arrival rate 
and database size. In addition, although not shown here di- 
rectly, these results indicate that RxW allows a broadcast 
system to scale in terms of the supportable broadcast band- 
width. Faster broadcast means shorter ticks, and thus, less 

«Note that FCFS is not shown on the« graphs. It is a 0(1) scheduling 
algorithm and so is insensitive to the parameters varied here. 

time to make scheduling decisions. RxW is clearly capable 
of making fast, scheduling decisions across a large range of 
system sizes and workload intensities. 

D. Robustness 

RxW and its approximations do not depend on any long 
term measurements or estimates of data access probability 
distributions, which enables them to easily adapt to changes 
in workload. The approximations, however, do use a thresh- 
old value that is dependent on previous performance. To 
test the robustness of the RxW variants, we performed a 
detailed sensitivity analysis. Due to space constraints, we 
briefly summarize the results of that analysis here. The re- 
sults are reported in more detail in [Aksoy97]. 

In one set of experiments, the skewness of the access pat- 
tern (i.e., 9) was varied between 1 (default) and 0 (a uni- 
form distribution). As the skew is reduced, all of the algo- 
rithms converge to the same average waiting time (at 9 - 
0). The relative ordering of the algorithms studied remained 
constant. A second set of experiments kept 9 at 1 but varied 
the focus of interest (i.e., the most popular items) to dif- 
ferent parts of the database. The results showed that the 
approximate variants of RxW were slightly less robust than 
LWF for infrequent shifts of interest but were significantly 
more robust than LWF as the frequency of interest shifts was 
increased. Finally, a third set of experiments introduced a 
sudden 20-fold spike or a 20-fold decrease in the arrival rate 
of client requests. The results showed that the number of re- 
quest queue entries scanned by RxW and its approximations 
still remained far below that of LWF. 

V. RELATED WORK 

In this paper we have presented a new on-demand schedul- 
ing algorithm for large-scale data broadcast. The directly 
relevant previous work on scheduling algorithms [Dyke86], 
[Wong88], [Vaidya96], [Su97] has been addressed in detail in 
Section II. In addition to this directly related work, there has 
been much recent interest in other areas of data broadcasting. 
A taxonomy of data delivery mechanisms (including various 
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forms of broadcast) along with a framework for describing 
dissemination-based systems is provided in [Fran97]. Some 
recent applications of dissemination-based systems include 
information dissemination on the Internet [Yan96], [Best96]. 
Advanced Traveler Information Systems [Shekhar96] and dis- 
semination using satellite networks [Dao96]. 

The Datacycle Project [HerniST], [Bowen92] at Bellcore 
investigated the use of a repetitive broadcast medium for 
database storage and query processing. An other early ef- 
fort in information broadcasting, the Boston Community 
Information System (BCIS) is described in [GirT90]. BCIS 
broadcast news articles and information over an FM channel 
to clients with personal computers specially equipped with 
radio receivers. Recently, scheduling techniques from the 
real-time community have been applied to data broadcast 
by Baruah and Bestavros [Baru96]. The Broadcast Disks 
project [Acha9-jb] has investigated a number of aspects of 
data broadcast using periodic push including scheduling and 
client caching [Acha95a], prefetching [Acha96] and integrat- 
ing push and pull over a broadcast channel [Acha97]. The 
issue of combining broadcast push and unicast pull is ad- 
dressed in [Stath9T]. The mobility group at Rutgers [Imie94] 
has done significant work on data broadcasting in mobile 
environments. A main focus ha? been on indexing in or- 
der to reduce power consumption at the mobile clients. 
Yiswanathan [Vis94] has studied integrating push and pull 
for a mobile broadcast environment. 

VI. CONCLUSIONS 

In this paper we focused on the challenges of large-scale 
on-demand data broadcast introduced by high bandwidth 
broadcasting media such as satellite or cable networks. Un- 
like previous work, we began by proposing a comprehensive 
set of performance criteria for scheduling algorithms. These 
criteria include worst case as well as average response time, 
three types of scalability, and robustness to changes in the 
nature and or intensity of the workload. We then described 
how previous algorithms fail in one or more of these criteria. 

We proposed a scheduling algorithm called RxW, that pro- 
vides a balanced treatment of hot and cold pages in order to 
achieve a good overall performance. The algorithm uses a 
novel pruning technique to reduce the search space for mak- 
ing broadcast decisions. While the pruning was shown to be 
effective, it was observed that such an algorithm could still 
eventually become a bottleneck for very large applications. 

We developed an approximate, parameterized variant of 
RxW that allows the search space to be reduced further, 
at the possible expense of making less efficient use of the 
broadcast bandwidth. By varying a single parameter, the 
algorithm can be tuned from the regular RxW algorithm, to 
a constant Urne approach that provides maximal scalability. 
We demonstrated the performance, scalability, and robust- 
ness of the different RxW variants through an extensive set 
of performance experiments. 

In terms of future work, we plan to integrate the on- 
demand scheduling described here, with push-based and 
other forms of data delivery as part of a larger Dissemination- 

Based Information Systems (DBIS) framework as described 
in [Fran97]. We also plan to investigate the scheduling of 
broadcast for hierarchical broadcast environments. 
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Abstract—Advances in broadcast technology and de- 
ployment, along with scalability concerns have made 
wide-area data broadcasting an increasingly promis- 
ing data delivery alternative for large client popula- 
tions.   As a result, there has been significant effort 
towards developing on-line scheduling algorithms for 
data broadcast servers. To date, such scheduling al- 
gorithms have been aimed at optimizing broadcast 
bandwidth allocation, and have been based on the as- 
sumption that all data items are readily available in 
the server's main memory. This approach ignores the 
data management issues that arise when data items 
need to be fetched from secondary storage or from re- 
mote sites before they can be broadcast  Such data 
staging concerns, if ignored, can result in significant 
degradation of the broadcast efficiency. In this paper 
we propose three data staging solutions: opportunistic 
scheduling, server caching, and prefetching, that are 
closely integrated with the RxW broadcast scheduling 
algorithm [AF98]. We then use a data broadcasting 
testbed based on IP-Multicast to examine the perfor- 
mance of these various solutions. Our results show that 
data staging concerns are indeed crucial, and that the 
hints provided by the RxW scheduling algorithm can 
be effectively used to dramatically enhance the perfor- 
mance of a large-scale on-demand broadcast system. 

I. INTRODUCTION 

A. Asymmetric On-Demand Broadcast 

Advances in telecommunications enable new 
asymmetric infrastructures for high speed data trans- 
mission rates using satellite networks or cable televi- 
sion networks [Dir96], [Web99], [Cyb99], [Hom98], 
[Cha98]. The asymmetry is in the relative capacity 
of the dedicated downlink (from server to clients) 
and the dedicated uplink (from server to clients). 

This work has been partially supportedby the NSF under grant 
IR'-9501353. by Rome Labs agreement number F30602-97-2- 
0241 under DARPA order number F078, and by research grants 
from Intel and NEC. 
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Typically, the downlink bandwidth is much higher 
than that of uplink so as to better match the high 
response versus request data flow rate, e.g., a mouse 
click of a URL request versus the whole contents of 
the Web page. High-bandwidth links are becoming 
available both on terrestrial cable networks and satel- 
lite networks. For example, the Teledesic system is 
expected to provide bandwidths of 155.52Mbps up to 
1.244Gbps [Tel94]. Cable technology offers band- 
widths of 36Mbps per channel for downstream, with 
110 channels or more [Dat99]. 

Currently most infrastructures are based on unicast 
data delivery method even though the network inher- 
ently provides broadcast capabilities. With unicast 
delivery a data item must be transmitted individ- 
ually to each client that requests it.   This results 
in serious scalability problems with increases in the 
client population. The client population meanwhile 
is showing an enormous growth with the improve- 
ments of interconnectivity.  For instance, in 1998, 
IntelliQuest [Int98] has reported 62 million Internet 
users only in US. When we consider such large client 
populations, the high downlink bandwidth is not suf- 
ficient as a solution with unicast data transfer.   In 
contrast to unicast, broadcast-based delivery allows 
a single transmission of an item to satisfy all clients 
that require that item. Compared to traditional uni- 
cast data transfer, broadcast can, therefore, be much 
more efficient for disseminating information to large 
client populations, especially for applications where 
there exists a high degree of commonality among 
client interests.   It should be noted that broadcast 
data transfer on these emerging infrastructures is al- 
ways as good as or better than unicast data delivery, 
since the downlink channel is a shared resource and 
can only employ one transmission at a time, i.e., can 
not parallelize the transmission on multiple connec- 
tions as for point-to-point infrastructures.   In this 



paper we focus on broadcast-based data dissemina- 
tion for on-demand data service using the emerging 
infrastructures. 

Fig. 1. Example Data Broadcasting Scenario 

An example large-scale on-demand data broadcast 
environment is shown in Figure 1. In this scenario, 
clients send requests for data items to a proxy server 
via an independent uplink channel. The server re- 
ceives and aggregates those requests in a service 
queue.   Based on the received requests the server 
chooses data items to broadcast, and sends them to 
the clients over the shared downlink. Clients monitor 
the broadcast to receive the items they are interested 
in.   This example depicts an environment similar 
to what could be provided using a Direct Broad- 
cast Satellite infrastructure such as Hughes Network 
System's DirecPC [Dir96]. In this case, the uplink 
is a terrestrial, wired network while the downlink 
is a high-bandwidth satellite link. Other technolo- 
gies are of course, also possible. For example, cable 
technology is also being used for data broadcast- 
ing [Hyb], and Internet multicast technology is im- 
proving [mee92]. 

B. Broadcast Scheduling and Data Staging 

A key design consideration in the development of 
an on-demand data broadcast system is the schedul- 
ing algorithm used by the server. Such an algorithm 
aims to choose at each instance, the most benefi- 
cial data item to be broadcast based on the unful- 
filled requests that have been received from clients. 
There has been significant work on the development 
of on-line scheduling algorithms (e.g., [DAW86], 
[Won88], [VH96], [ST97b], [AF98]). One main 
objective of the more recent studies has been devel- 
oping efficient algorithms with low overhead so that 
the available broadcast bandwidth can be effectively 

utilized. To date, however, this work has been based 
on the assumption that all data items are readily avail- 
able in the server's main memory to be broadcast' 
and has largely been focused on optimizing broadcast 
bandwidth allocation with the scheduling decisions 

made. 
In many practical applications, however, data may 

not be available immediately when required by the 
scheduler. There are many applications that involve 
large amounts of data that cannot be cost-effectively 
stored in main memory. Furthermore, in a wide-area 
distributed system such as the WWW, the items to 
be broadcast are likely to reside at a remote site. In 
either case, data items must be retrieved and brought 
into the server's main memory before they can be 
broadcast. The need to fetch data from various loca- 
tions produces large variance in service times, which 
can destroy the performance of traditional scheduling 
heuristics and can result in significant degradation of 
broadcast efficiency. For this reason, we have in- 
vestigated the coordination of broadcast scheduling 
with the management of the data items to be broad- 
cast. We refer to the process of making data items 
available for broadcast as data staging. 

C. Data Staging Solutions 

In this paper, we propose and investigate three 
complementary approaches to data staging. All three 
approaches are based on a broadcast scheduling algo- 
rithm called RxW, which we have previously shown 
to be efficient, effective, and robust for a wide range 
of workload characteristics [AF98], [AF99].  Intu- 
itively, RxW broadcasts an item either if there are 
many outstanding requests for that item, or if there 
is at least one long-outstanding request for that item. 
RxW is described in more detail in Section m. The 
three data staging approaches we investigate are the 
following: 

• Opportunistic Scheduling: It is crucial to keep 
the broadcast busy in order to fully exploit 
the available downlink bandwidth. We some- 
times broadcast sub-optimal, but memory resi- 

'The only exception of which we are aware is an early study 
by Dykeman et al. [DW88]. As discussed in Section Vm, this 
work is based on a scheduling algorithm that is not suitable for 
large systems, and includes solutions that require fine-grained 
control over the location of data on magnetic disks. 
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dent data items, when the optimal page to broad- 
cast is being brought to server's memory. We 
investigate how to select such sub-optimal pages 
with only small deviations from the optimal al- 
location in the most efficient way. 

• Caching: One obvious way to reduce the need 
for fetching data items is to make the best use 
of the available memory space on the server. 
The key to successful caching for on-demand 
broadcast servers is to retain those items that are 
most likely to be scheduled. The RxW algorithm 
can provide very good hints for identifying such 
pages because it differentiates between popular 
and not-so-popular items. We exploit this prop- 
erty to make intelligent caching decisions. 

• Prefetching: Another method to reduce access 
latency is to predict which items will be broad- 
cast in the near future and to bring them into 
the cache before they are actually scheduled for 
broadcast. We examine prefetching in an in- 
tegrated caching/prefetching environment and 
exploit hints provided by RxW to identify items 
that are not cached but are likely to be broadcast 
in the near future. 

We have implemented a data broadcast testbed us- 
ing IP-Multicast on a cluster of Pentium-based work- 
stations running Windows NT. We use this prototype 
to study the performance characteristics of the three 
data staging approaches we propose. In our ex- 
periment's, we concentrate mainly on disk-resident 
data sets. The data staging approaches, however, are 
equally applicable to data residing at remote sites. 
In order to address this issue we also examine the 
effectiveness of the approaches as the latency for 
obtaining data is increased. 

The remainder of this paper is organized as fol- 
lows.   In Section Ü we give a brief overview of 

II. OVERVEW OF THE MECHANISM 

In this section we briefly explain the way the three 
data staging solutions interact with each other and 
the role of the scheduling algorithm during the pro- 
cess. As stated in the Introduction, previous work on 
on-demand broadcast scheduling did not address the 
issue of data staging. If data staging is completely ig- 
nored, the server would simply apply the scheduling 
algorithm and block on a cache miss (when the sched- 
uled page is not in memory), waiting for the sched- 
uled page to be faulted into memory. Obviously, 
such blocking would cause a significant degradation 
of broadcast bandwidth utilization, resulting in poor 
system performance. Instead, the server should ini- 
tiate an asynchronous request to fetch the missed 
page. We will show that the implications of such 
asynchronous requests are not as straight forward as 
in the case of file systems. 

We first explain the server mechanism where each 
data staging solution is designed to complement each 
other. 

Service 
Queue Server Cache 

Fig. 2. Mechanism 

The integrated mechanism is summarized in Fig- 
ure 2.  The user requests are queued at the server 

lows,   in xenon 11 « B- . — ~ - -   using a single entry per page. Since once a page£ 
the mechanism applied for an integrated scheduling broadcast all requests on that page will be s^sfied 
and data staging solution. In Section m we briefly we do not need to keep track of multiple entries for 
present the RxW scheduling algorithm. This is fol- the same page in the service queue All information 
[owed by the description of the prototype system usedbyme^hedulmgalgorito.smcorporatedin^ 
in Section IV and experimental environment used to this single entry and is updated for each ^ti°nd re- 
evaluate our data staging techniques. Sections V, VI, quest made for the same page. InF.gure 2theserver 
and VE present the data staging solutions that we continuously selects a page to *™d™\b™™ 
proposeändanalyzetheirperformance. Section VIÜ service queue, ^fe^1?1^^ 
discusses related work. Section IX presents our con- rithm is used, referred to as schedule in the figure^ In 
elusions and plans for future research. this mode, if the scheduled page is m the cache (hit). 
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it is immediately broadcast. If the selected page is 
not in the cache (miss), an asynchronous request is 
initiated to fetch the page. This request is queued 
among previously requested pages, as shown in the 
miss queue. Then the page's entry is removed from 
the service queue. Later, when a missed page arrives 
in memory, it is broadcast as soon as the broadcast 
channel is available. Meanwhile, as the fetch takes 
place, the scheduler is run again for the next page 
to broadcast and the original scheduling process is 
repeated 2. 

We place a limit on the number of outstanding 
I/O requests in the miss queue in order to avoid 
I/O thread thrashing. When this limit is exceeded, 
we change the mode of scheduling, and apply the 
opportunistic scheduling process, marked as oppor- 
tunistic schedule. In this mode the server selects 
only cache-resident pages for broadcast 3. That is, 
if the original scheduling was to select a non-cache- 
resident page, the opportunistic scheduler selects an 
alternative page that can be broadcast because it is 
available. Such pages that are selected not according 
to the original scheduling algorithm, but according to 
availability is shown as opportunistic pages in Fig- 
ure 2. A key question for opportunistic scheduling 
is which cache-resident pages to select for broadcast 
during opportunistic scheduling mode. This issue 
will be examined in detail in Section V. 

Another question that we address in this paper is 
the caching policy used by the server. That is, when a 
missed page arrives at the memory how we manage 
the server cache, so that the need to apply oppor- 
tunistic scheduling is reduced. In Section VI we will 
analyze the server caching policy that we particularly 
propose for the RxW scheduling algorithm. 

The final front of our attack to data staging prob- 
lem is to bring the pages from the request queue to the 
cache before they are actually scheduled. This pro- 

2Another approach could be to generate multiple candidates 
during the scheduling process in order to ensure there is at least 
one page that can be broadcast immediately. This approach can 
be useful especially for high-overhead scheduling algorithms. 
In oui ca>e, since ihe RxW scheduling decision overheadis very 
low, we take the liberty of rescheduling until a cache hit and 
therefore use the most current queue state at each scheduling 

decision. 
'As soon as the number of outstanding requests drops back 

below the limit, we switch back to the original scheduling mode. 

cess is shown with prefetch in Figure 2. The pages 
that are selected for prefetch are queued in a prefetch 
queue and, when they arrive, are placed in a separate 
part, of the cache, prefetch cache. Later, when they 
are scheduled the page is moved to the normal cache 
space accordingly. If a page that is being prefetched 
is scheduled before it arrives at server's memory, the 
page is marked to be treated as a missed page so that 
it will be placed in the normal cache space and will 
be broadcast as soon as it arrives. The decision on 
which pages to prefetch is examined in Section VII. 

Different combinations of data staging solutions 
can yield interesting results for a broadcast environ- 
ment as we will observe in Section V-B. In this paper, 
we will apply an incremental design in the order of 
opportunistic scheduling, server caching and server 
prefetching. All three approaches are closely related 
to the scheduling algorithm used. 

m. THE RXW SCHEDULING ALGORITHM 

In this section,  we briefly describe the RxW 
scheduling algorithm, which serves as the basis for 
our integrated broadcast scheduling and data stag- 
ing techniques.   RxW is a practical, low-overhead 
and scalable algorithm that provides excellent per- 
formance across a wide range of settings and perfor- 
mance criteria [AF98]. In this work, we assume that 
the data items to be broadcast are fixed-length and, 
thus, we refer to them as pages. Scheduling exten- 
sions to handle variable length data have been devel- 
oped elsewhere [VH97], [ST97a], [AM98]; similar 
extensions for data staging are possible and consti- 
tute a part of our future work. As described in [AF98] 
the best overall scheduling quality can be obtained 
by an even-handed treatment of hot (popular) and 
cold (not-so-popular) pages. Based on this intuition, 
RxW schedules a page either because it is very pop- 
ular or because there is one outstanding request that 
has waited a long time for that page. At each schedul- 
ing decision the RxW algorithm chooses to broadcast 
the page with the maximal RxW value where R is 
the number of outstanding requests for that page and 
W is the time that the oldest outstanding request for 
that page has been waiting. 
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A. RxW: Implementation 

Scheduling is performed at the server in an on-line 
fashion. The server maintains a service queue that 
contains a single entry for each page. Each request 
entry carries all the information that is necessary for 
making the scheduling decision, namely the number 
of outstanding request(s) for the page (R) and the 
arrival time of the oldest of those requests. The ar- 
rival time is used to compute the waiting time (W) by 
simply subtracting from current time at each schedul- 
ing decision. The server maintains two sorted lists 
threaded through the service queue: one based on 
the number of outstanding requests (referred to as 
the R-list) and the other on the waiting time of the 
oldest request for that page (referred to as W-list). 4 
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Fig. 3. Pruning the Search Space 

These two sorted lists are used to avoid an exhaus- 
tive search of the service queue when searching for 
the page with the maximal RxW value. The search 
technique is depicted in Figure 3. The search starts 
from the entry at the top of the R-list (the page with 
the most outstanding requests) which corresponds to 
the entry for page a in Figure 3. There are 80 out- 
standing requests for page a and the oldest of those 
pages have been waiting for 10 broadcast ticks (time 
needed to broadcast a single page). At this point, the 

«Maintaining these two sorted lists is fairly inexpensive; The 
arrival of a request for a page for which there are currently 
no outstanding requests results in the creation of a new service 
queue entry where the R value is set to 1 and the arrival tune is 
set to current time. This entry is appended to the tail of the R-list 
and the W-list. Thereafter, the arrival of subsequent requests 
for that page increments the R value of the entry, and relocates 
the entry in the R-list, but does not impact the entry's position 
in the W-list. Entries are removed from both lists when the 
corresponding page is broadcast. 

maximum R x W value is set to 800. The R value of 
the following page on the R-list, page b, is then used 
to compute a lower limit on the W value for any page 
that can beat the current maximum RxW value. 
Since the entries are sorted in descending order, we 
know that all entries that are not yet scanned at this 
point have an R value that is less than or equal to 50. 
Therefore we know that any entry that could possi- 
bly have a higher RxW value must have a W value 
greater than 800/50. This computation enables us 
to prune the W-list, i.e., we need not go any further 
beyond this limit on the W-list. 

Next, the service queue entry for the page at the top 
of the W-list (the entry with the oldest outstanding 
request) is examined and similarly, used to place 
a lower limit on the R value. The algorithm then 
keeps alternating between the two lists, raising the 
limit on the other list as appropriate and thereby 
pruning the search space further. The search stops 
when the limit is reached on one of the lists. This 
technique effectively shrinks the search space while 
still guaranteeing that the search will return the page 
with the maximum RxW value. 

B. RxW.a: A Parameterized Approximation 

The overhead of scheduling can be further reduced 
by relaxing the requirement of broadcasting the page 
with the highest RxW value.   We have observed 
that the maximal RxW valued page typically re- 
sides at a much higher location than the one at which 
the scheduling process ultimately stops; Most of the 
search is done to guarantee maximality. Using this 
observation, we developed an approximation-based 
version of the algorithm. By varying a single param- 
eter a, this approximation ranges in cost from that of 
the maximal RxW algorithm defined above to a con- 
stant time algorithm. The approximation algorithm 
broadcasts the first page it encounters whose RxW 
value is greater than or equal to a times the current 
threshold value. The threshold is computed as the 
running average of the RxW value of the last page 
broadcast and the previous threshold. In cases where 
no such page is found, the search proceeds within the 
pruned search space, and the page with the highest 
RxW value is broadcast.   After each broadcast 
decision, the threshold is updated accordingly. 

The setting of the a parameter determines the 
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performance tradeoffs among average waiting time, 
worst case waiting time, and scheduling overhead. 
The smaller the value of the parameter, the fewer en- 
tries are likely tobe scanned.5 For the experiments in 
this paper we use RxW.90 (i.e., a = 0.9) as the broad- 
cast scheduling algorithm. We have observed that 
in our experimental test-bed configuration, RxW.90 
provides a reasonable trade off between scheduling 
quality (i.e., closeness to the optimal bandwidth al- 
location) and scheduling overhead (i.e., the time it 
takes to make a scheduling decision). It should be 
noted, however, that we have tested our data staging 
solutions using the full RxW algorithm and its ap- 
proximations with different a values between 0 and 
1. Even though the specific behaviour of the various 
data staging approaches varies somewhat for differ- 
ent approximation settings, the trends described in 
this paper hold for all cases tested. 

IV. PROTOTYPE 

As stated in Section I, we have implemented 
a testbed and used it to study our staging ap- 
proaches. The prototype is implemented on a clus- 
ter of pentium-based workstations running Windows 
NT 4.0. Each machine has an Intel Pentium Pro 
200MHz CPU and 64 MBs of main memory. One of 
these machines is dedicated as the server. The pages 
to be broadcast are all initially stored on the server's 
local disk. The local disk of the server is a fast wide 
SCSI 4GB Seagate ST32550. 

Each machine has two independent Ethernet con- 
nections: one for the uplink and one for the down- 
link. Requests are sent on a 10Mbps uplink and 
the server broadcasts pages on a 100 Mbps down- 
link. The downlink employs UDP (Unreliable Data- 
gram Protocol) for multicasting the data to all of 
the workstations in the cluster using the IP-multicast 
support provided with Windows NT 4.0. During ex- 

5Typically the a parameter will be set to a value between 0 
and 1. In the limit, setting a to oo results in the approximation 
algorithm behaving identically to the maximal RxW algorithm. 
At an extreme value of 0, the algorithm simply compares the top 
entry from both the R-List and the W-list and chooses the one 
with the highest RxW value. In this case, the complexity of 
making a scheduling decision is reduced to 0(1), ensuring that 
broadcast scheduling will not become a bottleneck regardless 
of the broadcast bandwidth, database size, or woridoad inten- 
sity [AF98J. 

periments, the testbed is isolated from any external 
network to avoid external network traffic. 

The server has two main responsibilities:   re- 
quest processing (queuing new requests), and broad- 
cast management (making scheduling decisions and 
broadcasting pages).   Two threads running on the 
server perform these two jobs. To ensure that the 
request arrival rate is fixed across all algorithms, the 
request processing thread is given top priority. In our 
prototype server a single CPU handles request pro- 
cessing, and broadcast management. Therefore, the 
performance numbers that we present include request 
processing time. In order to minimize this request 
processing time that appears in the performance re- 
sults, we avoided using actual messages from the 
clients over the uplink. Instead, we pre-generate the 
request pattern for each experiment, and record it on 
the server disk. The server then uses double buffer- 
ing to read the requests such that it fills up one buffer 
as it processes the requests in the other buffer. We 
monitored the system to verify that the server always 
finds the second buffer ready when it consumes the 
requests from the first buffer. All algorithms evalu- 
ated experience exactly the same amount of request 
processing. File buffering of the operating system 
is disabled throughout the experiments so as not to 
interfere with the data staging operations. 

In the experiments, we first warm up the server 
cache and then make sure equilibrium is reached be- 
fore taking measurements. Equilibrium occurs when 
the number of outstanding requests in the system sta- 
bilizes, i.e., the request satisfaction rate converges to 
the request arrival rate. We use Little's Law [Tri82] 
to evaluate the average waiting time using the logical 
service queue length 6. 

V. OPPORTUNISTIC SCHEDULING 

We have introduced the mechanism we use to ap- 
ply integrated data staging solution in Section Ü. 
Recall that we had a limit on the number of outstand- 
ing requests and we were switching to opportunistic 
scheduling mode when this limit is reached, so that 
only cache-resident pages will be scheduled. In this 

'Recall that the length of the physical queue maintained at the 
server is limited by the number of pages in the database and is 
much smaller than the logical queue length, i.e. the number of 
outstanding requests. 
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section we describe the algorithms we apply for de- 
ciding on which cache-resident page to broadcast in 
order to keep the broadcast channel utilized in the 
opportunistic scheduling mode. We then evaluate 
these algorithms in Section V-B. 

A. Opportunistic Scheduling Algorithms 

We have developed three algorithms for choos- 
ing cache-resident pages for broadcast during op- 
portunistic scheduling mode. The first two of these 
require that scheduler be aware of each page's avail- 
ability. This requires, the service queue entries main- 
tained by the RxW be extended with a flag that indi- 
cates whether or not the corresponding page is cache- 
resident. This flag is set when the page is brought 
into cache and cleared when the page is replaced 
from the cache. Following is the description of the 
three approaches: 

. Best Cache Resident (OS-BCR):  In this algo- 
rithm, we run the scheduler as in the original 
case. However, the maximum R x W value and 
the limits on either queue are updated only for 
the cache resident pages. As a result, we keep 
track of the best-cache-resident page according 
to the scheduling algorithm.   Note that when 
we apply opportunistic scheduling, only cache- 
resident pages are broadcast and therefore only 
the corresponding entries are deleted from the 
service queue and then rebuilts up from the bot- 
tom of the lists. As a result, cache-resident pages 
appear at a lower level than they normally would 
be in the original scheduling mode. Therefore 
we expect more number of entries to be scanned 
during the search of opportunistic scheduling, 
since°no matter how high RxW values we ob- 
serve on non-cache-resident pages, the search 
stops only when the best cache-resident pages 
satisfies the stopping condition. 

. Earlier Stop (OS-ES):  This algorithm aims at 
searching less number of entries while making 
the opportunistic scheduling decision. It sim- 
ply runs the scheduler as usual, but keeps track 
of two broadcast candidates: best cache-resident 
page and overall-best page (including pages that 
are not cache-resident). The search stops when 
the overall-best page meets the stopping condi- 
tion, rather than the best cache-resident page. 

We refer to this case where the scheduler stops 
as if all pages are in the cache as the original 
application of the algorithm.   At the end of 
this original application, the best cache-resident 
page (among the ones searched upto this point), 
if any, is selected for broadcast.  If no cache- 
resident page is encountered at this point, the 
search continues until the first cache-resident 
page.   Therefore less number of entries need 
to be scanned during the search using OS-ES. 
Note that the algorithm does not guarantee that 
the best cache-resident page (among all that are 
available) according to the scheduling criteria is 
broadcast. 

. Scan Cache (OS-SC): The intuition behind the 
algorithm is to minimize the overhead involved 
in selecting a cache-resident page to broadcast. 
This algorithm does not use the RxW scheduling 
algorithm except for the initial check to see if 
the original application yields a cache hit. Oth- 
erwise it basically cycles through the pages in 
the cache using a pointer, referred to as next- 
ToBroadcast, initially set to the page at the top 
of the cache. The algorithm simply broadcasts 
the page pointed by nextToBroadcast if there are 
any outstanding requests for this page. Other- 
wise the pointer is advanced to the next page 
in cache until one with outstanding requests is 
found and broadcast.  After the broadcast, the 
pointer is advanced to the next page in order to 
determine the broadcast candidate in the next 
opportunistic scheduling. To avoid unexpected 
behavior, we also advance the pointer when the 
pointed page is replaced in the cache. 

B. Opportunistic Scheduling: Evaluation 

In this section we experiment our approaches on 
the test-bed we have implemented as described in 
Section IV. We first describe the workload we ap- 
plied in this and subsequent experiments. We then 
report the results of the experiment. 

The workload we used for the majority of the ex- 
periments is based on a Zipf distribution with 6 set 
to 1 [Knu81]. The Zipf distribution is such that 
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where p, is the probability of accessing page i, N is 
the size of the database and 6 is the skewness parame- 
ter. The database consists of 10000 pages. All pages 
are 16K and disk-resident. At most 100 concurrent 
asynchronous I/O requests are allowed during the 
experiments. The cache size is varied between 5% 
and 100% of the database. LRU cache replacement 
policy is used throughout these experiments. The 
approaches we have developed are aimed at large- 
scale systems with many thousands of clients. We, 
therefore, stress-test our prototype at an arrival rate 
of 1000 requests/sec. We have also tried lower and 
higher rates and we observed similar results for op- 
portunistic scheduling algorithms. We describe the 
effects on other data staging approaches in corre- 
sponding sections. We now proceed with the evalu- 
ation of opportunistic scheduling. 

As already discussed in Section V, blocking on 
a cache miss is not favorable at all.   To see how 
much of a performance penalty such ignorance of the 
data staging problem would bring, we compare the 
performance of opportunistic scheduling algorithms 
against such a case where data staging is completely 
ignored.   Figure 4 shows the performance results 
of this experiment. In this experiment, the average 
waiting time is measured as the cache size increases 
from 5% of the database to 100% of the database. 
In Figure 4 SYNCH refers to the case where the 
server issues a synchronous I/O request for cache 
misses and stalls until the required page is broadcast. 
As expected opportunistic scheduling (the bottom 
most tree curves curves) provides orders of magni- 
tude improvement across all cache sizes.   For in- 
stance, at 4000 page cache size, all opportunistic 
scheduling approaches have 17 times better perfor- 
mance than SYNCH. The improvement obtained by 
opportunistic scheduling is due to the better band- 
width utilization. For instance, at 4000 page cache 
size opportunistic scheduling uses 98% of the band- 
width that could be used (if all pages were in the 
cache).  In contrast SYNCH uses only 22% of the 
bandwidth that could be used. Note that the relative 
bandwidth usage would be even more significant for 
latencies higher than secondary storage, i.e., when 
data needs to be retrieved from remote sites.  All 
curves converge at 10000 page cache size, since all 
pages are in the cache and there is not any cache miss 

that will differentiate the behavior. At this point the 
performance is fully determined by the scheduling 
algorithm used which is the same for all three. 

Next we take a closer look at the opportunistic 
scheduling algorithms. Figure 5 zooms up the bot- 
tom left comer of Figure 4. Here, we see at OS-SC 
gives the best performance across all ranges. OS-ES 
gives the worst performance across all ranges ex- 
cept for 500 page cache. All algorithms converge 
at 4000 page cache, because then the asynchronous 
miss queue is not full and therefore opportunistic 
scheduling is not applied for any algorithm. In the 
figure, we observe a significant performance differ- 
ence between the algorithms at 3000 page cache, i.e., 
OS-SC is 2.3 times better than OS-ES at this point. 
The performance differences come from two fac- 
tors: the broadcast efficiency and the broadcast error 
made. The trade off between these factors define the 
performance of an algorithm. 

For instance, OS-ES's poor performance is mostly 
due to the scheduling error made, even though OS- 
ES has a quite good broadcast efficiency. Figure 6 
plots the bandwidth usage for the three algorithms 
measured for the same experiment. The bandwidth 
usage shown does not include any accompanying 
data flow information, such as UDP packet head- 
ers etc.  Bandwidth is measured as the total num- 
ber of data bytes broadcast per second.  Also note 
that the maximum bandwidth usage is limited by 
59Mbps, even if all pages are in the cache due to 
NT system overhead.  In other words, OS-ES can 
use at least 85% of the available bandwidth in the 
whole range of measured cache sizes. On the other 
hand, OS-ES results in a very poor broadcast sched- 
ule.  It actually converges to always selecting the 
cache-resident page with the most outstanding re- 
quests during opportunistic scheduling mode. This 
kind of over favoring hot pages has already been 
shown to provide a poor performance [AF98]. Fig- 
ure 7 plots the bandwidth allocation error measured 
during the experiment.  The bandwidth allocation 
error metric is computed by comparing the resulting 
bandwidth allocation generated by the algorithm ver- 
sus the optimal bandwidth allocation that is defined 
in [DAW86]. The optimal allocation must be done 
in relative square root ratios of page access proba- 
bilities. We measure the rate at which each page is 
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broadcast and average the percentage of the absolute 
error made when compared to this optimal case. As 
shown in Figure 7 OS-ES results in the highest band- 
width allocation error among all three algorithms. 

Going back to Figure 5, OS-BCR performs bet- 
ter than OS-ES since, OS-BCR makes better broad- 
cast decisions. As shown in Figure 7 OS-BCR 
makes significantly less error when compared to OS- 
ES. Therefore OS-BCR performs better than OS- 
ES, even though OS-BCR has worse broadcast effi- 
ciency, i.e., slower, than OS-ES since it scans more 
service queue entries to decide on the cache-resident 
page to broadcast. This is due to the fact that the 
scheduling overhead is increased significantly when 
the scheduler is restricted to choose a cache resident 
page. For instance, the number of entries that need 
to be scanned increases 2000 fold for a cache size of 
500 pages when compared to OS-ES. In Figure 6 OS- 
BCR is shown to be the most inefficient algorithm 

Fig. 7. Scheduling Error 

among all three. 
Finally, OS-SC gives the best performance in Fig- 

ure 5, because it wins on both factors. OS-SC has the 
minimum overhead among all three algorithms, and 
therefore yields the best bandwidth usage as shown 
in Figure 6. In addition, OS-SC yields a pretty good 
broadcast schedule. The cache-resident pages that 
are broadcast during opportunistic scheduling are 
only a small subset of the pages that are of inter- 
est to the client population, and therefore a uniform 
broadcast of pages with outstanding requests does a 
pretty good job of scheduling in the overall. 

These results demonstrate that broadcast efficiency 
is just one of many aspects that contribute to perfor- 
mance in a real system, and that the sum of the effects 
of these different components are what determine 
overall performance. As described in [AF98], the 
trade off between different components was in fact 
the motivation behind the approximate versions of 
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RxW. Opportunistic scheduling solves the broadcast 
efficiency problem when compared to synchronous 
requests, however it converts this efficiency problem 
to broadcast error problem. 

VI. SERVER CACHE MANAGEMENT FOR 

BROADCAST-BASED SERVERS 

For a highly skewed distribution such as the Zipf, 
RxW will broadcast individual hot pages more than 
their colder counterparts, but in the overall, signifi- 
cant bandwidth will be given to cold pages. In our 
experiments we have observed that approximately 
1/3 of the bandwidth is expended broadcasting the 
top 10% hottest pages, with the remaining 2/3 go- 
ing to the colder pages. This implies that for small 
cache sizes, LRU is not very useful. LRU has the 
well-known property that once a page is access - 
broadcast in our case - it will be placed at the top of 
the LRU stack and then it has to travel all the way 
down before it will be replaced from the cache. This 
implies that for small cache sizes: 1) Cold pages will 
always result in a cache miss when LRU is employed; 
since the low frequency of cold page broadcasts will 
make them the least recently used page (they travel 
all the way to the tail of LRU stack) before they are 
scheduled again. 2) It is not only the cold pages, but 
also the hot pages that will suffer in this case; since 
the high number of cold pages being broadcast can 
force hot pages to be flushed off the cache before 
they are scheduled for broadcast again. 

Fortunately it is possible to replace the server 
cache replacement policy with one that better 
matches the broadcast scheduling algorithm used. 
Alternatives to LRU that avoid the problem of cold 
pages replacing hot pages have been proposed (e.g., 
LRU-K [OOW93] and 2Q [JS94]). These policies 
maintain past reference history for items that are no 
longer in the cache and use it to distinguish cold 
pages from hot ones. In our environment, however, 
we have a unique advantage, namely, that the RxW al- 
gorithm already provides valuable information that 
can reliably be used to distinguish hot pages from 
cold, without the need to store additional access his- 
tory. In the following subsection we investigate the 
technique that uses this information. 

A. LRU With Love/Hate Hints (LH) 

In this section we describe the algorithm that we 
use to improve server's cache management. Recall 
that RxW aims to provide a balanced treatment of hot 
and cold pages. More explicitly, RxW broadcasts a 
page either if it is popular enough or if it has been 
waited for long enough. Hot pages are more likely 
to be broadcast because they have a large number of 
outstanding requests and hence, will be high on the 
R-list when they are scheduled for broadcast. On the 
other hand, cold pages are likely to have accumu- 
lated some waiting time before they are scheduled 
and therefore will be high on the W-list. Thus, due 
to the data structure used by RxW it is possible to 
distinguish between the popularity of pages and treat 
these pages accordingly. Pages that appear to be hot 
at the time they are chosen for broadcast are tagged 
with a "love" hint and placed at the top of the LRU 
stack, while those that appear to be cold are tagged 
with a "hate" hint and put at the bottom of the LRU 
stack where they are likely to be chosen as replace- 
ment victims. We refer to this extension of LRU as 
'LRU-LH" or simply "LH". With 'LH" we expect 
the cache to converge to a state where it only keeps 

popular pages. 
To decide if a page chosen for broadcast should be 

considered hot (i.e., marked with love-hint) the page 
must meet the following tests: 

1. In the scheduler's alternating search of the R 
and W lists the page must be encountered on the 
R-list before it is encountered on the W-list. 

2. The page must appear in the top hot range pages 
of the R-list, and there must not be any pages 
with the same number of requests that lie beyond 
this range. 

The first test ensures that the page is higher on the R- 
list than on the W-list. This requirement is satisfied 
by simply updating the current maximum RxW with 
a only a larger value, excluding equal values. As 
a result once a page is selected on the R-list it is 
guaranteed that it has not been scanned on the W-list 
yet and the page is a candidate for a hot page. The 
second test aims to reserve the cache for the hottest 
pages that can fit. The special handling for "ties" is 
intended to avoid over-committing the cache in the 
case that many pages have the same R value. The 
size of the hot range is set to be a fraction of the 
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size of the cache and the number of outstanding page 
requests as 

cacheSize x 
entryCnt 

dbSize 

the hit rate almost as much as PCACHE does. This 
proves the ability to distinguish between hot pages 
and cold pages through the use of the RxW algo- 
rithm. Due to the increased hit rate, opportunistic 
scheduling is used less frequently and the optimal 
decision made by RxW.90 is realized more often. 
Going back to Figure 8 we see all algorithms con- 
verge for hit rates over 0.5. 8   This performance 
is obtained when the majority of the missed pages 
have only one or two requests pending and those re- 
quests have already accumulated a high waiting time 
(around 4 seconds). Therefore an additional disk I/O 

In this section we investigate possible improve-    ^^ dQes nQt impact ±t overall performance a 
ments by more suitable server cache management   ^ ^ smaU penaUy of cache wisses is easny paid 
policies. The workload parameters are as described   ^     ^ ^^ Q{ opportunistic scheduling, 
in Section V-B. In this experiment, we take the best      _.        . w _r *-.—„ c ic tixt>i ^^ 

where entryCnt is the total number of pages queued 
for broadcast at the time of scheduling decision, and 
dbSize is the total number of unique pages requested 
by the client population 7. 

B. Caching: Evaluation 

In this section we investigate possible improve- 

opportunistic scheduling algorithm of Section V-B, 
namely OS-SC and replace the cache replacement 
policy of LRU with LH. To evaluate the benefits of 
LH we compare it with LRU and an idealized (i.e., 
impractical) algorithm called PCACHE. This latter 
algorithm uses perfect knowledge of the data access 
distribution and keeps the pages with the highest ac- 
cess probabilities in cache at all time. PCACHE 
demonstrates the ideal case LH is aiming at converg- 
ing to. 

We use the same workload as described in Sec- 
tion V-B for this experiment. The average waiting 

The main result of Figure 8 is that with LH a 
cache size of 20% of the database is enough for 
perfect performance. This suggests that LH needs 
half the cache size LRU would need for this skewed 
workload. This improvement is especially impor- 
tant when we consider large database sizes being 
accessed with a skewed distribution. 

VTJ. REDUCING I/O LATENCY 

The final front of our attack to data staging problem 
is to bring the pages to the cache before they are 
actually scheduled for broadcast. The trick here is tion V-B ior mis expcimicm.   *i»» »*w«-fe~ ••——o    •«.»—»v  . . .       .. 

Hmeforth=threecachtatpondes_USho»,inH8    »^»J^J^«~£E 
caching, we exploit properties of the RxW algorithm 
to make such predictions. 

ure 8. Note that, the curve labeled as LRU is the 
same curve labeled as OS-SC in Figure 5. In all 
three approaches OS-SC alternative is being used for 
opportunistic scheduling. On the x-axis, the cache 
size is varied up to 5000 pages, and the y-axis shows 
the average waiting time for the algorithms. As can 
be seen in the figure, LRU provides the worst per- 
formance across the entire range of cache sizes. LH 
performs significantly better than LRU. For instance,   ^  ^ 
at 2000 page cache, LH is 2.8 times better than LRU. ^^ ft cjm change on]y when a page is broadcast. 
LH is almost as good as PCACHE across the entire fo cQntrast ^ top of ^ R.iist which is much more 
range. This suggests that LH is very successful in ^^ R ^ change for eveiy „^st that arrives 
converging to the behavior of keeping the cache with ^ ^ ^^ ^^ ^ predictjon of pages that are 
the top most popular pages. This observation« fur-   ^^ ^ ^ chQstn due t0 ^^ w vaiue (j.e., cold 

A. Prefetching 

We focus our prefetching efforts on predicting 
which cold pages are likely to be chosen for broad- 
cast. There are two reasons behind this choice. First, 
prefetching requires prediction based on the current 
state of the service queue. The top of the W-list is 

ther supoorted bv the hit rates shown in Figure 9 for 
the same experiment. We observe that LH improves 

7In general, if the database size is not known a-priori (e.g.. 
when pages reside on remote sites), an estimate by observing the 
pages requested from the server can be used. 

pages) is more reliable than for hot pages. Second, 
the hit rate on cold pages is expected to be very low, 

»Note mat the hit rates in Figure 9 are not yet at 1 since the 
cache can keep only half of the pages in the database. 
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and the LH caching policy aims at effectively keep- 
ing hot pages in cache. We apply a division of labor 
between the two approaches used in an integrated de- 
sign. Caching has the responsibility of keeping track 
of the pages at the top of the R-list, and prefetching 
has the responsibility of keeping track of the pages 
at the top of the the W-list. 

The main idea of prefetching is to make sure that 
all pages within a defined range at the top of the W-list 
are either already in the cache or are in the process of 
being prefetched. The size of the range is a parameter 
called prfWindow. A buffer of prfWindow pages 
is reserved in the cache (i.e., taken out of the LH- 
managed space) and background threads are used to 
prefetch pages into this buffer. When a page from 
the prefetch buffer is broadcast (and hence, its entry 
removed from the W-list), the prefetch of a new page 
is initiated. If a page is scheduled for broadcast while 
it is in the process of being prefetched, the page is 
broadcast as soon as it arrives. 

B. Prefetching: Evaluation 

In this experiment we evaluate the effectiveness 
of prefetching using the workload as described in 
Section V-B. Figure 10 shows the average wait time 
with prefetching (labeled "PRF" on the graph) and 
without (labeled "LH"). For both cases, Scan Cache 
Opportunistic Scheduling (OS-SC) and LRU with 
Love/Hate hints (LH) is being applied. The differ- 
ence comes from the use of prefetching. The to- 
tal cache size including the buffer for the pages to 
p. efetch is varied from 500 to 5,000 pages. These re- 
sults were generated with a prfWindow of 250. This 
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value is chosen according to our experiments vary- 
ing the prefetch window at the cache size of 2000 
pages. 

In the first experiment, we apply data staging 
to disk-resident data. The limited effectiveness of 
prefetching in this case can be seen in Figure 10. In 
Figure 10 we see that when prefetching is added to 
LH there is little or no improvement when compared 
to LH alone. This behavior arises, since the average 
wait for pages is much higher than the time it takes 
to read a page from disk (even if the disk is highly 
utilized). The cost of the I/O does not significantly 
contribute to the time it takes for a user request to 
be satisfied, thus prefetching is not very helpful in 
reducing the latency of secondary storage. The two 
curves curverge when the hit rate of the server is al- 
ready above the tolerable limit of 0.5 as described in 
Section VI-B, i.e., when additional disk I/O does not 
impact the waiting time significantly. 

In Figure 11, we plot the results for higher latencies 
for page retrieval. In this case we use a cache size of 
2000 pages and we gradually increase the latency of 
retrieving pages. As the latency increases we see a 
great advantage coming from prefetching. At around 
1 second, PRF results 95% improvement in terms of 
the waiting time compared to that would be achieved 
when prefetching is not used. The performance boost 
comes from the improved scheduling quality when 
prefetching is used. We observe the bandwidth allo- 
cation error curves for the same experiment increase 
in a similar behaviour as shown for average waiting 
time. The two curves converge at latencies around 
25 seconds, where latency becomes the dominating 



factor. 

Fig. 10. Average Wait (Disk Resident Data) 

VIII. RELATED WORK 

As stated previously, there has been much work 
on developing scheduling algorithms for on demand 
data broadcasting [DAW86],  [DW88],  [Won88], 
[VH96], [ST97b], [AF98] and that all of this work 
with the exception of Dykeman et al. [DW88] ig- 
nored the issue of data staging.   The Dykeman et 
al. work was performed assuming an environment 
that differed substantially from the one studied here. 
First, the context of that work was Teletext sys- 
tems, which had much lower bandwidths and hence, 
much smaller databases to broadcast. Thus, the so- 
lutions in that earlier paper used a very expensive 
scheduling and cache replacement algorithm that 
would not scale for the large-scale systems with very 
large databases.   Second, some of the approaches 
in [DW88] were based on assumptions about detailed 
control over disk devices, that are not applicable to 
today's commodity disk drives and controllers, and 
do not address the problem of data residing on re- 
mote sites. Finally, the Dykeman et al. study was 
done using simulation so much of the overhead and 
contention that arises in a real system was not consid- 
ered. Despite these differences, this study provides a 
powerful insight to pioneer data staging problem and 
our results have some common conclusions: speed- 
ing up the rate at which requested pages are retrieved 
is of top priority for performance even if this is at the 
expense of not being able to retrieve the page with 
the highest priority immediately. 

The result that the optimal broadcast bandwidth 

Fig. 11 • Average Wait varying Latency 

allocation is in proportion to the ratios of the square 
roots of the page access probabilities was shown 
in [DAW86] and [AW87]. Recall that this prop- 
erty of broadcast plays a key role in our result that 
low overhead Opportunistic Scheduling approaches 
can have a poor performance due to poor bandwidth 
utilization. 

In the more general context, data staging has also 
been studied for multimedia systems.    Ozden et 
al. [ORS96] studied buffer replacement algorithms 
for multimedia storage systems that exploit the large 
file sizes and sequential access found in many mul- 
timedia applications.    Aggarwal et al. [AWY96] 
have studied scheduling algorithms for Video-On- 
Demand systems, and proposed a heuristic that uses 
the number of outstanding requests per page and the 
broadcast history followed up per page. This study 
also ignores the data staging problem. In [FD95], 
prefetching was shown to be an effective perfor- 
mance enhancer for video-on-demand systems. The 
success of prefetching in this study, however, is 
mainly based on the sequential access of video files. 
Prefetching has been used together with caching 
to reduce access latencies in many other contexts. 
For example, Patterson et al.'s informed prefetching 
study [PGG+95] has shown that prefetching using 
hints from applications is an effective way of ex- 
ploiting 10 concurrency. As stated previously, while 
prefetching is also helpful in the on-demand broad- 
cast setting especially for high latencies, the need 
for it is obviated for secondary storage latencies by 
the ability to do background "post-fetching" with lit- 
tle penalty in additional path length for page access 
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and little degradation of the quality of the broadcast 

schedule. 

IX. CONCLUSION 

We have presented a data delivery scheme that is 
especially good for large client populations with a 
high overlap in interest. In this scheme, the server 
receives individual pull requests from clients and 
broadcasts the results. We have shown that a real im- 
plementation with a large database and a fast broad- 
cast channel must take data staging concerns seri- 
ously in order to achieve reasonable performance. 

Our basic approach integrates broadcast schedul- 
ing and data staging in a novel way. We use love/hate 
hints derived from the scheduling data structures to 
guide the caching of popular pages. Beyond that, we 
have shown that, while it is tempting to use prefetch- 
ing to improve the performance of the cache, it is 
more effective to use a "post-fetching" technique 
that we call opportunistic scheduling, for secondary 
storage latencies. The best results , for secondary 
storage latencies occur when we simply keep the 
broadcast filled with decent items instead of worry- 
ing about sending the best items which might be hard 
to obtain because of staging problems. For higher 
latencies, however, prefetching proved to be very 

effective. 
We have implemented a prototype system on Win- 

dows NT 4.0 to show that the data staging algorithms 
that we propose dramatically reduce the penalty of 
data retrieval latency. 

In the future, we plan to focus more on wide- 
area systems in which the data items of interest may 
be located on other machines which, like a disk, 
introduce additional latency. We will also look at 
problems introduced by variable length data items 
and by stream-oriented data with ordering constraints 

(e.g., video). 
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1    Introduction 

The proliferation of the Internet and intranets, the development of wireless and 
satellite networks, and the availability of asymmetric, high-bandwidth links to 
the home, have fueled the development of a wide range of new "dissemmation- 
based-' applications. These applications involve the timely distribution of data 
to a large set of consumers, and include stock and sports tickers, traffic infor- 
mation systems, electronic personalized newspapers, and entertainment delivery. 
Dissemination-oriented applications have special characteristics that render tra- 
ditional client-server data management approaches ineffective. These include: 

- tremendous scale. 
- a high-degree of overlap in user data needs. 
- asymmetric data flow from sources to consumers. 

For example, consider a dissemination-oriented application such as an elec- 
tion result server. Typically, such applications are implemented by simply posting 
information and updates on a World Wide Web server. Such servers, however, 
can and often do become overloaded, resulting in the inability for users to access 
the information in a timely fashion. We argue that such scalability problems are 
the result of a mismatch between the data access characteristics of the applica- 
tion and the technology (in this case, HTTP) used to implement the applica- 
tion. HTTP is based on a request-response or RPC, unicast (i.e., point-to-point) 
method of data delivery, which is simply the wrong approach for this type of 
application. 

Using request-response, each user sends requests for data to the server. The 
large audience for a popular event can generate huge spikes in the load at servers, 
resulting in long delays and server crashes. Compounding the situation is that 
users must continually poll the server to obtain the most current data, resulting 
in multiple requests for the same data items from each user. In an application 
such as an election server, where the interests of a large part of the population 
are known a priori, most of these requests are unnecessary. 

The use of unicast data delivery likewise causes problems in the opposite 
direction (from servers to clients). With unicast the server is required to respond 
individually to each request, often transmitting identical data. For an application 
with many users, the costs of this repetition in terms of network bandwidth and 
»erver cycles can be devastating. 
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To address the particular needs of dissemination-based applications, we are 
developing a general framework for describing and constructing Dissemination- 
Based Information Systems (DBIS). The framework incorporates a number of 
data delivery mechanisms and an architecture for deploying them in a networked 
environment. The goal is to support a wide range of applications across many 
varied environments, such as mobile networks, satellite-based systems, and wide- 
area networks. Bv combining the various data delivery techniques in a way that 
matches the characteristics of the application and achieves the most efficient 
use of the available server and communication resources, the scalability and 
performance of dissemination-oriented applications can be greatly enhanced. 

In this paper, we provide an overview of the current status of our DBIS 
research efforts. We first explain the framework and then describe our initial 
prototype of a DBIS toolkit. We then focus on several research results that have 

arisen from this effort. 

2    The DBIS Framework 

There are two major aspects of the DBIS framework.3 First, the framework 
incorporates a number of different options for data delivery. A taxonomy of 
these options is presented in Section 2.1 and the methods are further discussed in 
Section 2.2. Secondly, the framework exploits the notion of network transparency, 
which allows data delivery mechanisms to be mixed-and-matched within a single 
application. This latter aspect of the framework is described in Section 2.3. 

2.1     Options for Data Delivery 

We identify three main characteristics that can be used to describe data delivery 
mechanisms: (1) push vs. pull; (2) periodic vs. aperiodic; and (3) unicast vs. 1- 
to-N. Figure 1 shows these characteristics and how several common mechanisms 

relate to them. 

Client Pull vs. Server Push - The first distinction we make among data 
delivery styles is that of "pull vs. push". Current database servers and object 
repositories support clients that explicitly send requests for data items when 
they require them. When a request is received at a server, the server locates 
the information of interest and returns it to the client. This request-response 
style of operation is pull-based — the transfer of information from servers to 
clients is initiated by a client pull. In contrast, push-based data delivery involves 
sending information to a client population in advance of any specific request. 
With push-based delivery, the server initiates the transfer. 

The tradeoffs between push and pull revolve around the costs of initiating 
the transfer of data. A pull-based approach requires the use of a backchannel for 

3 Parts of this section have been adapted from an earlier paper, which appeared in the 
1997 ACM OOPSLA Conference [Fran97]. 
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Fig. 1. Data Delivery Characteristics 

each request. Furthermore, as described in the Introduction, the server must be 
interrupted continuously to deal with such requests and has limited flexibility 
in scheduling the order of data delivery. Also, the information that clients can 
obtain from a server is limited to that which the clients know to ask for. Inus, 
new data items or updates to existing data items may go unnoticed at clients 
unless those clients periodically poll the server. 

Push-based approaches, in contrast, avoid the issues identified for client-pull, 
but have the problem of deciding which data to send to clients in the absence of 
specific requests. Clearlv, sending irrelevant data to clients is a waste of resources. 
A more serious problem, however, is that in the absence of requests it is possible 
that the servers will not deliver the specific data that are needed by clients in 
a timelv fashion (if ever). Thus, the usefulness of server push is dependent on 
the ability of a server to accurately predict the needs of clients. One solution to 
this problem is to allow the clients to provide a profile of their interests to the 
servers. Publish/subscribe protocols are one popular mechanism for providing 

such profiles. 

Aperiodic vs. Periodic - Both push and pull can be performed in either an 
aperiodic or periodic fashion. Aperiodic delivery is event-driven - a data request 
(for pull) or transmission (for push) is triggered by an event such as a user action 
(for pull) or data update (for push). In contrast, periodic delivery is performed 
according to some pre-arranged schedule. This schedule may be fixed, or may 
be generated with some degree ofrandomness.4 An application that sends out 
stock prices on a regular basis is an example of periodic push, whereas one that 
sends out stock prices only when they change is an example of aperiodic push. 

For the purposes of this discussion, we do not distinguish between fixed and random- 
ized schedules. Such a distinction is important in certain applications. For example 
algorithms for conserving energy in mobile environments proposed by Imiehnski et 
al [Imie94b] depend on a strict schedule to allow mobile clients to   doze   during 
period* when no data of interest to them will be broadcast. 
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Unicast vs. 1-to-N - The third characteristic of data delivery mechanisms we 
identify is whether they are based on unicast or 1-to-N communication. With 
unicast communication, data items are sent from a data source (e.g., a sin- 
gle server) to one other machine, while 1-to-N communication allows multiple 
machines to receive the data sent by a data source. Two types of 1-to-N data 
delivery can be distinguished: multicast and broadcast. With multicast, data is 
sent to a specific subset of clients. In some systems multicast is implemented by 
sending a message to a router that maintains the list of recipients. The router 
reroutes the message to each member of the list. Since the list of recipients is 
known, it is possible to make multicast reliable; that is, network protocols can be 
developed that guarantee the eventual delivery of the message to all clients that 
should receive it. In contrast, broadcasting sends information over a medium on 
which an unidentified and unbounded set of clients can listen. This differs from 
multicast in that the clients who may receive the data are not known a priori. 

The tradeoffs between these approaches depend upon the commonality of 
interest of the clients. Using broadcast or multicast, scalability can be improved 
by allowing multiple clients to receive data sent using a single server message. 
Such benefits can be obtained, however, only if multiple clients are interested in 
the same items. If not. then scalability may actually be harmed, as clients may 
be continually interrupted to filter data that is not of interest to them. 

2.2    Classification of Delivery Mechanisms 

It is possible to classify many existing data delivery mechanisms using the char- 
acteristics described above. Such a classification is shown in Figure 1. We discuss 
several of the mechanisms below. 

Aperiodic Pull - Traditional request/response mechanisms use aperiodic 
pull over a unicast connection. If instead, a 1-to-N connection is used, then 
clients can "snoop" on the requests made by other clients, and obtain data that 
they haven't explicitly asked for (e.g, see [Acha97, Akso98]). 

Periodic Pull - In some applications, such as remote sensing, a system may 
periodically send requests to other sites to obtain status information or to detect 
changed values. If the information is returned over a 1-to-N link, then as with 
request/response, other clients can snoop to obtain data items as they go by. 
Most existing Web or Internet-based "push" systems are actually implemented 
using Periodic Pull between the client machines and the data source(s) [Fran98]. 

Aperiodic Push - Publish/subscribe protocols are becoming a popular 
way to disseminate information in a network [Oki93, Yan95, Glan96]. In a pub- 
lish/subscribe system, users provide information (sometimes in the form of a pro- 
file) indicating the types of information they wish to receive. Publish/subscribe 
is push-based; data flow is initiated by the data sources, and is aperiodic, as there 
is no predefined schedule for sending data. Publish/subscribe protocols are in- 
herently 1-to-N in nature, but due to limitations in current Internet technology, 
they are often implemented using individual unicast messages to multiple clients. 
Examples of such systems include Internet e-mail lists and some existing "push" 
systems on the Internet. True 1-to-N delivery is possible through technologies 
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such as IP-Multicast, but such solutions are not universally available across the 

Internet. 
Periodic Push - Periodic push has been used for data dissemination in manj 

systems. An example of Periodic Push using unicast is Internet mailing lists that 
send out "digests" on a regular schedule. For example, the Majordomo system 
allows a list manager to set up a schedule (e.g., weekly) for sending digests. 
Such digests allow users to follow a mailing list without being continually inter- 
rupted by individual messages. There have also been many systems that use Pe- 
riodic Push over a broadcast or multicast link. These include TeleText [Amma85, 
Wong88]. DataCycle [HermST], Broadcast Disks [Acha95a, Acha95b] and mobile 

databases [Imie94b]. 

2.3    Network Transparency 

The previous discussion has focused primarily on different modes of data delivery. 
The second aspect of the DBIS framework addresses how those delivery modes 
are used to facilitate the efficient transfer of data through the nodes of a DBIb 
network. The DBIS framework defines three types of nodes: 

1. Daia Sources, which provide the base data to be disseminated. 
2   Clients which are net consumers of information. 
3' Information Brokers, (or agents, mediators, etc.), which acquire information 

from other sources, possibly add value to that information (e.g., some ad- 
ditional computation or organizational structure), and then distribute this 

information to other consumers. 

Brokers are the glue that bind the DBIS together. Brokers are middlemen; 
a broker acts as a client to some number of data sources, collects and possibly 
repackages the data it obtains, and then functions as a data source to other 
nodes of the system. By creating hierarchies of brokers, information delivery can 
be tailored to the needs of many different users. 

The ability of brokers to function as both clients and data sources provides the 
basis for the notion of Network Transparency. Receivers of information cannot 
detect the details of interconnections any further upstream than their immediate 
predecessor. Because of this transparency, the data delivery mechanism used 
between two or more nodes can be changed without requiring changes to the data 
delivery mechanisms used for other communication in the DBIS. For example, 
suppose that node B is pulling data values from node A on demand. Further 
suppose that node C is listening to a periodic broadcast from node B which 
includes values that B has pulled from A. Node C wül not have to change it s 
data gathering strategy \i A begins to push values to B Changes in links are of 
interest only to the nodes that are directly involved. Likewise uns transparency 
allows the «appearance" of the data delivery at any node to differ from the way 
the data is actually delivered earlier in the network. This in turn, allows the 
data delivery mechanisms to be tailored for a given set of nodes. For example, a 
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broker that typically is very heavily loaded with requests could be an excellent 
candidate for a push-based delivery mechanism to its clients. 

Current Internet "push" technology, such as that provided by PointCast [Rama98] 
provide an excellent example of network 'transparency in action. To the user sit- 
ting at the screen, the system gives the impression of using aperiodic push over 
a broadcast channel. Due to current limitations of the Internet, however, that 
data is actually brought over to the client machine using a stream of periodic 
pull requests, delivered in a unicast fashion. Thus, the data delivery between 
the client and the PointCast server is actually the exact opposite of the view 
that is presented to the user in all three dimensions of the hierarchy of Figure 1. 
This situation is not unique to PointCast; in fact, it is true for virtually all of 
the Internet-based push solutions, and stems from the fact that current IP and 
HTTP protocols do not adequately support push or 1-to-N communication. 

■ :tw»t 
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Fig. 2. The Map Dissemination Application 

3    An Initial Prototype 

As stated in the introduction, our ultimate goal is to build a toolkit of com- 
ponents that can be used to create a DBIS tailored to support a particular set 
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of dissemination-based applications. In order to better understand the require- 
ments and desired properties of such a toolkit, we have constructed an initial 
prototype toolkit and have used it to implement a weather map dissemination 

application. . 
Figure 2 shows an example screen from this application. In this application 

one or more "map servers" sends out updated maps of different types (i.e., 
radar, satellite image, etc.) for different regions of the United States. Clients 
can subscribe to updates for specific types of maps for specific regions. They 
can also pose queries to obtain the most recent versions of specific maps. The 
DBIS components route such queries to the appropriate server(s). In the current 
prototype, all maps are multicast to all clients - the clients perform additional 
filtering to avoid displaying unrequested results to the user. In the remainder oi 
this section, we briefly describe the implementation of the prototype toolkit. 

3.1    Toolkit Description 

Figure 3 shows an example instantiation of a DBIS using the current toolkit. 
The toolkit consists of four main components. These are shown as lightly-shaded 
items in the figure. The darker shaded items are software that is not part of the 
DBIS toolkit, namely, the data sources and clients themselves. The components 
of the current prototype are: 

1. Data Source (DS) Library - a wrapper for data sources that encapsulates 
network communication and provides conversion functions for data. 

2 Client Library - a wrapper for client programs that encapsulates network 
communication and provides conversion functions for queries and user pro- 
files The client library is also responsible for monitoring broadcast and mul- 
ticast channels and filtering out the data items of local interest that appear 

on those channels. .      , 
3 Information Broker (IB) - the main component of the DBIS toolkit. Ihe 

IB contains communication, buffering, scheduling, and catalog management 
components and is described in more detail below. 

4 Information Broker Master - The IB Master is responsible for managing 
global catalog information about data and about the topology of the DBIS. 
Ail IBs must register with the IB Master and all catalog updates must be 
sent to the IB Master. The presence of the IB Master is one of the major 
limitations of this initial prototype, as it is obviously a potential scalability 
bottleneck for the system. A large part of the design effort for the next 
version of the prototype is aimed at distributing the functions of the IB 

Master. 

3.2    Data Modeling Considerations 

The DBIS prototype currently uses a simple data model: the catalog consists 
of a set of category definitions. Categories are application-specific, that is, each 
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Fig. 3. An Instantiation of a DBIS 

application provides its own set of category definitions. Each data item is asso- 
ciated with a single category. In addition, a set of keywords can be associated 
with each data item. Categories and keywords are used in the specification of 
queries and profiles. Queries are pull requests that are transmitted from a client 
to a data source. Queries consist of a category and optional keywords. Queries 
are processed at a data source (or an IB); all data items that match the cate- 
gory (and at least one of the keywords if specified) are sent to the client from 
which the query originated. In contrast, profiles are used to support pusA-based 
delivery. When a new data item arrives at an IB, its category and keywords are 
compared with the user profiles registered at that IB and the item is sent to 
any clients whose profile indicates an interest in the item. Thus, profiles can be 
viewed as a form of continually executing query. 

Clearly, this simple approach to data modeling must be extended to sup- 
port more sophisticated applications. We are currently exploring database and 
WWW-based (e.g., XML) approaches for semi-structured data modeling for use 
in subsequent versions of the toolkit. 

3.3    Information Broker Architecture 

As stated above, the Information Broker module contains most of the function- 
ality of the DBIS toolkit. The architecture of an IB is illustrated in Figure 4. 
Basic components of the IB are the following: 
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Fig. 4. Information Broker (IB) Architecture 

Catalog Manager - This component manages local copies of catalog in- 
formation for use by the processes running at the broker. Recall that the 
primary copy of the catalog is managed by the IB Master. All requested 
changes to the catalog information are sent to the IB Master, which then 
propagates them to the catalog managers of all other IBs. 

Data Source Manager - This component is in charge of receiving and 
filtering data items obtained from the data sources. It manages a separate 
listener thread for each data source directly connected to the IB. 

Broker Agent - This component is responsible for IB-to-IB interaction, 
that is, when an IB receives data from another IB rather than directly from 
a data source. 
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Broadcast Manager - Once data has been filtered through the data source 
manager or the broker agent, it is passed to the Broadcast Manager, which 
has two main components. The Mapper assigns the data item to one or more 
physical communication channels. The Scheduler makes decisions about the 
order in which data items should be placed on those channels. 
Network Manager - This is the lowest level of the communication com- 
ponent of the IB. It sends data packets to the network according to the 
information provided by the broadcast manager. 
Client Manager - This module handles all requests that arrive from the 
clients of the IB. It forwards these requests to the proper modules within 
the IB and maintains communication sessions with the clients. 

4    Example Research Topics 

Having described our general approach to building Dissemination-Based Infor- 
mation Systems, we now focus on two examples of the many research issues that 
arise in the development of such systems. 

Satellite 

Fig. 5. Example Data Broadcasting Scenario 

4.1    Topic 1: On Demand Broadcast Scheduling 

As described in Section 2.1, one of the many possible mechanisms for data dis- 
semination uses on-demand (i.e., aperiodic pull) broadcast of data. An example 
scenario using such data delivery is shown in Figure 5. In this scenario, two inde- 
pendent networks are used: a terrestrial network for sending pull requests to the 
server, and a "listen only" satellite downlink over which the server broadcasts 
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data to all of the clients. When a client needs a data item (e.g., a web page or 
database object) that it cannot find locally, it sends a request for the Hem to the 
server. Client requests are queued up (if necessary) at the server upon arrival. 
The server repeatedly chooses an item from among these requests, broadcasts 
it over the satellite link, and removes the associated request(s) from the queue. 
Clients monitor the broadcast and receive the item(s) that they require^ 

In a large-scale implementation of such a system, an important consideration 
is the scheduling algorithm that the server uses to choose which request to ser- 
vice from its queue of waiting requests. We have developed a novel on-demand 
broadcast scheduling algorithm, called RxW [Akso98], which is a practical, low- 
overhead and scalable approach that provides excellent performance across a 

range of scenarios. 
The intuition behind the RxW scheduling algorithm is to provide a balanced 

performance for hot (popular) and cold (not so popular) pages- This intuition is 
based on our observations of previously proposed algorithms. We have observed 
that two low overhead algorithms, Most Requests First (MRF) and First Come 
First Served (FCFS) [Dvke86, Wong88], have poor average case performance 
because thev favor the broadcasting of hot or cold pages respectively. A third 
algorithm. Longest Wait First (LWF) [Dyke86, Wong88] was shown to provide 
fairer treatment of hot and cold pages, and therefore, good average case perfor- 
mance. LWF. however, suffers from high overhead, making it impractical for a 

large svstem. ,      , 
Based on these observations, we set out to combine the two low-overhead 

approaches (MRF and FCFS) in a way that would balance their strengths and 
weaknesses. The RxW algorithm schedules the page with the maximal fix» 
value where R is the number of outstanding requests for that page and W is the 
amount time that the oldest of those requests has been waiting for the page. 
Thus RxW schedules a page either because has many outstanding requests or 
because there is at least one request that has waited for a long time. 

The algorithm works by maintaining two sorted lists (one ordered by R values 
and the other ordered by W values) threaded through the service queue, which 
has a single entry for any requested page of the database. Maintaining these 
sorted lists is fairly inexpensive since they only need to be updated when a 
new request arrives at the server5. These two sorted lists are used by a pruning 
technique in order to avoid an exhaustive search of the service queue to find the 
mavima! RxW value. This technique is depicted in Figure 6 

The search starts with the pages at the top of the R list. The corresponding 
W value for that page is then used to compute a limit for possible W values. 
That is, after reading the top page in the R list, it is known that the maximum 
ÄxW-valued page cannot have a W value below this limit. Next, the entry for 
the page at the top of the W list is accessed and used to place a limit on the 
R value The algorithm alternates between the two queues and stops when the 
limit is reached on one of them. This technique prunes the search space while 

* In contrast, for LWF the ordering can change over time, even in the absence of new 

requests. 
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Fig. 6. Pruning the Search Space 

still guaranteeing that the search will return the page with the maximum RxW 
value. 

In our experiments [Akso98], the pruning technique was shown to indeed 
be effective - reducing the number of entries searched by 72%. While such a 
substantial savings is helpful, it is probably not sufficient to keep the scheduling 
overhead from ultimately becoming a limiting factor as the system is scaled to the 
huge applications that will be enabled by the national and global broadcasting 
systems currently being deployed. 

In order to achieve even greater reductions in the search space we developed 
an approximation-based version of the algorithm. By varying a single parameter 
Q. this algorithm can be tuned from having the same behavior as the RxW 
algorithm described so far, to being a constant time approach. The approximate 
algorithm selects the first page it encounters whose RxW value is greater than 
or equal to a x threshold, where threshold is the running average of the RxW 
value of the last page that was broadcast and the threshold at that time. 

The setting of a determines the performance tradeoffs between average wait- 
ing time, worst case waiting time, and scheduling overhead. The smaller the 
value of the parameter, the fewer entries are likely to be scanned. At an extreme 
value of 0, the algorithm simply compares the top entry from both the R list 
and the W list and chooses the one with the highest RxW value. In this case, 
the complexity of making a scheduling decision is reduced to 0(1), ensuring that 
broadcast scheduling will not become a bottleneck regardless of the broadcast 
bandwidth, database size, or workload intensity. We demonstrated the perfor- 
mance, scalability, and robustness of the different RxW variants through an 
extensive set of performance experiments described in [Akso98]. 

4.2    Topic 2: Learning User Profiles 

User profiles, which encode the data needs and interests of users, are key com- 
ponents of push-based systems. From the user's viewpoint, a profile provides 
a means of passively retrieving relevant information. A user can submit a pro- 
file to a push-based system once, and then continuously receive data that are 
(supposedly) relevant to him or her in a timely fashion without the need for 
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submitting the same query over and over again. This automat, flo»f ^^t 
information helps the user keep pace with the ever-increasing rate of ^formation 
generaUon. From the system point of view, profiles fulfill a role similar to that of 
fue es in database or information retrieval systems. In fact, profiles are a form 

Continuously executing query. In a large publish »™*«?^£% 
and access of user profiles can be be resource-intensive. Additionally given the 
fact that user interests are changing over time, the profiles must be updated 
arcordinelv to reflect up to date information needs. 

We ha .developed an algorithm called Multi-Modal (MM), for^cremen- 
tallv constructing and maintaining user profiles for filtering text-based dat 
terns [Ceti98l MM can be tuned to tradeoff effectiveness (>.e accuracy of the 

filtere dU lems), and efficiency of profile management. The algorithm recedes 
relevance feedback information from the users about the documents that they 
have seen (i.e., a binary indication of whether or not the document was con- 
sidered useful and uses this information to improve ^-tpro^ 
important aspect of MM is that it represents a user profile as multiple U}^word 
vectors whose size and elements change dynamically based on »ff^J^- 

In fact, it is this multi-modal representation of profiles which allows MM 
to tradeoff effectiveness and efficiency. More specifically, the algorithm can b 
tuned using a threshold parameter to produce profile, with *^*     j^ 
consider the two boundary values of this threshold parameter to illustrate ths 
rad off When the threshold is set to 0, a user profile is represented by a singk 

levword vector, achieving an extremely low overhead for profile management, 
but seiouslv limiting the effectiveness of the profile. At the other extreme  if 
the th -hold is set to 1, we achieve an extremely fine granularity user model 
how ver the profile size equals the number of relevant docu-ents observed by 
the user  making it impractical to store and maintain profiles^ Therefore  it is 
more desirable to consider intermediate threshold values which will provide an 
optimal effectiveness/efficiency tradeoff for a given application. 

We evaluated the utility of MM by experimentally investigating is ability to 
categorize pages from the World Wide Web. We used non-interpolated average 
P: cfsion as our primary effectiveness metric and focused§ onhe pro file size 
for quantifying the efficiency of our approach. We demonstrated ^at we can 
achieve significantly higher precision values with modest mcrease.n pwfik ««». 
Additionally, we were able to achieve precision values with small profiles that 
were ompa able to, or in some cases even better than those obtained with 
maximum sized profiles. The details of the algorithm, experimental setting, and 

the results are discussed in [Ceti98]. 

5    Summary 

The increasing ability to interconnect computers through mternetworking mo- 
Se and wt eL networks, and high-bandwidth content de hvery to the home^ 
has Suited in a proliferation of dissemination-oriented apphcatxons. These ap- 
%a?on  PrSentPnew challenges for data management throughout all compo- 

48 



nents of a distributed information system. We have proposed the notion of a 
Dissemination-Based Information System (DBIS) that integrates many different 
data delivery mechanisms and described some of the unique aspects of such sys- 
tems. We described our initial prototype of a DBIS Toolkit, which provides a 
platform for experimenting with different implementations of the DBIS Compo- 
nents. Finally we described our work on two of the many research issues that 
arise in the design of DBIS architectures. 

Data Dissemination and data broadcasting are very fertile and important 
areas for continued research and development. In fact, we see a migration of 
data management concerns from the traditional disk-oriented architectures of 
existing database systems, to the more general notion of Network Data Manage- 
ment, in which the movement of data throughout a complex and heterogeneous 
distributed environment is of paramount concern. Our ongoing research efforts 
are aimed at better understanding the challenges and tradeoffs that arise in the 
development of such systems. 
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Introduction 
The proliferation of the Internet and intranets, advances in wireless and satellite networks, and the 
Ivailabil v of asymmetnc, high-bandwidth links to the home, have fueled the development of a wide 
rASnainWd" applications. These applications.involvejfte,^*£^°» °f 

data to a laree set of consumers, and include stock and sports tickers, traffic inform« on systems 
elect onic personalized newspapers, and entertainment delivery. D.ssemmation-onented applications 
navS thVrender traditional client-server data management approach*; ineffective. 
These delude: tremendous scale, significant overlap in user data needs, and asymmetnc data flow from 

sources to consumers. 

The mismatch between the data access characteristics of these applications and the technology'used to 
imminent them on the WWW results in scalability problems [Fran98]. For example, WWW based 

pptSfe« 
of data delivery Using request-response, each user sends requests for data to the server. The large 
audience for popular event can generate huge spikes in the load at servers, resulting in long delays and 
ove "aded serverVcompöundinJ the situation is that users must continually poll the server to obtain 
Z^cSSiSting in multiple requests for the same data items from each user. In an 
appSonTuch as an electionresult server, where the interests of a large part of the population are 
known a priori, most of these requests are unnecessary. 

In order to address the needs of this new class of applications, we are developing a ««^«ion-Based 
, J      \   % ,ctomc mm^ toolkit The toolkit serves as an adaptable middleware layer that 

E^^Snment. The toolkit also includes facilities for performance ^omtonng whic^can 
aHow System developer to examine the impact of using different data delivery mechanisms^ We tave 
!^™X iidtial^«!» of this toolkit and have used it to develop a weather map dissemination 

application. 

DBIS-Toolkit Overview 
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The DBIS Framework 
The basic concepts of the DBIS framework were presented at the OOPSLA 97 conference [Fran97]. A 
more recent description appears in [Akso98b]. The two major features of the framework are: First, it 
incorporates a number of different options for data delivery, including traditional request-response, 
publish/subscribe, Broadcast Disks [Acha95, Acha97] and on-demand broadcast [Akso98a]. Second, it 
is based on the notion of network transparency, which allows different data delivery mechanisms to be 
mixed-and-matched within a single application. Network transparency is provided through the use of 
Information Brokers, which acquire information and distribute it to other consumers. Brokers are 
middlemen; a broker acts as a client to some number of data sources, collects and possibly repackages 
the data it obtains, and then functions as a data source to other nodes of the system. Along the way, 
brokers may add value to the information, such as integrating it with data from other sources or 
enhancing its organizational structure. By creating hierarchies of brokers, information delivery can be 
tailored to the needs of many different users. 

Data Source 

Ctuloj Wb. 

Information 
Broker 

Client 
Toofci 

Applicsion Dwtloper 

Figure 1: An Instantiation of a DBIS 

Toolkit Description 
The toolkit provides a set of application programming interfaces (APIs) and libraries that allow a 
developer to construct and experiment with a DBIS application. Figure 1 shows an example instantiation 
of a DBIS using the current toolkit. The DBIS-Toolkit consists of four main components (shown as 
lightly-shaded items in the figure): 

Data Source (DS) Library - a data source wrapper that encapsulates network communication and 
provides conversion functions for data. 

Client Library - a client program wrapper that encapsulates network communication and provides 
conversion functions for queries and user profiles. It also provides monitoring and filtering of broadcast 
or multicast channels. 

Information Broker (IB) - the main component of the DBIS-Toolkit. The IB contains communication, 
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buffering, scheduling, and catalog management components and is described in more detail below. 

Information Broker Master - The IB Master is responsible for managing global catalog information 
about data and the topology of the DBIS. All IBs must register with the IB Master and all catalog 
updates must be sent to the IB Master. 

In addition to these four components, the toolkit contains a flexible performance monitonng capability 
that can be used to graphically display real-time performance metrics such as bandwidth and CPU 
utilization, response times, etc. on a per-IB basis. 

Data Modeling 
As the focus of this project to date has been on the "plumbing" required to integrate multiple forms of 
data delivery at the application level, the current prototype uses a very simple data model consisting of 
categories and keywords within those categories. Categories and keywords are used in the specification 
Tonnes and profiles. Queries are pull requests that are transmitted from a client to a data source (via 
one or more IBs). Queries consist of a category and optional keywords. Quenes are ultimately processed 
at a data source -- all data items that match the category and at least one keyword (if specified) are sent 
to the client from which the query originated. In contrast, profiles are used to support P^^d 
delivery When a new data item arrives at an IB, its category and keywords are compared with the user 
profiles registered at that IB and the item is sent to any clients whose profile indicates an interest m the 
Tm Thus! profiles can be viewed as a form of continually executing quenes. The integrano   of more 

sophisticated data models such as (XML-based) semi structured models, and more flexible IR-style 
models is one aspect of our on-going development for the toolkit. 
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Figure 2: Information Broker (IB) Architecture 

Information Broker Architecture 
As stated above, the IB contains much of the functionality of the DBIS-Toolkit. The IB module (shown 
in Figure 2) consists of the following components: 

Data Source Manager (DSM) - This component obtains (via push or pull) data items from the data 
sources and matches them v/ith client pull requests or profiles. 

Broker Agent (BA) - This component performs similar functions as the DSM but for sources that are 
actually other IBs (rather than data sources). In addition, the BA handles other IB-to-IB functions such 
as profile and request forwarding. 

Catalog Manager - This component manages local copies of catalog information for use by the 
processes running at the broker. All catalog changes are sent to the IB Master, which propagates them to 
the catalog managers of all other IBs. 

Broadcast Manager - Once data have been filtered through the DSM or B A, they are passed to the 
Broadcast Manager, which has two main components. The Mapper assigns data items to one or more 
physical communication channels. The Scheduler makes decisions about the order in which data items 
sho'iid be placed on those channels. 
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Network Manager - This is the lowest level of the communication component of the IB. It sends data_ 
packets to the network according to the information provided by the broadcast manager. 

Client Manager - This module handles requests that arrive from the IB's clients. It forwards them to the 
proper modules within the IB and maintains communication sessions with the clients. 

A DBIS Application 
An initial version of the DBIS-Toolkit has been built using Windows NT and its IP Multicast support. 
The toolkit has been used to create a weather map dissemination application (see Figure 3). In this 
application "map servers" send out updated maps of different types (i.e., radar, satellite image, etc.) for 
different regions of the United States. Clients can subscribe to receive updates for specific types of maps 
for specific regions. Users can also pose queries to obtain the most recent versions of specific maps or to 
zoom in on specific regions of the maps. Maps are delivered over unicast or multicast links. The 
application serves as a demonstration vehicle emphasizing the following unique aspects of the 
DBIS-Toolkit: 

• The incorporation of multiple delivery mechanisms and the ways in which they are supported by 
the various components of the toolkit. 

• The ability to make efficient use of available resources by choosing appropnate delivery 
mechanisms. 

• The exploitation of Network Transparency through the use of multiple levels of Information 
T3*-rvl/af,p 

• The ability to monitor the system dynamically using the graphical performance monitor. 
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Abstract 

The dramatic improvements in global interConnectivity due 

to intranets, extranet?, and the Internet has led to an explo- 

sion in the number and variety of new data-intensive applica- 

tions. Along with the proliferation of these new applications 

have come increased problems of scale. This is demonstrated 

by frequent delays and service disruptions when accessing 

networked data sources. Recently, push-based techniques 

have been proposed a.s a solution to scalability problems for 

distributed applications. This paper argues that push in- 

deed has its place, but that it is just one aspect of a much 

larger design space for distributed information systems. We 

propose the notion of a Dissemination-Based Information 

System (DB1S) which integrates a variety of data delivery 

mechanisms and information broker hierarchies. We discuss 

the properties of such systems and provide some insight into 

the architectural imperatives that wül influence their design. 

The DB1S framework can serve as the basis for development 

of a toolkit for constructing distributed information systems 

that better match the technology they employ to the char- 

acteristics of the applications they are intended to support. 

1    Introduction 

1.1    The World-Wide Wait 

The scenario is all too familiar — a major event, such as 

a national election, is underway and the latest, up-to-the 

minute results are being posted on the Web.  You want to 

monitor the results for the important national races and 

for the races in your state, so you fire up your trusty web 

'This work has been partially »upported by the NSF under grant 
IRI-9501353, by Rome Labs Agreement Number F30602-97-2-0241 
under ARPA order number F078, by an IBM Cooperative Gradu- 
al» Fellowship, and by research funding and equipment from Intel 
Corporation. 

browser, point it at the election result web site and wait, 

and wait, and wait.... What's the problem? It could be 

any number of technical glitches: a congested network, an 

overloaded server, or even a crashed server. In a larger sense, 

however, the problem is one of scalability; the system cannot 

keep up with the heavy load caused by the (transient) surge 

in activity that occurs in such situations. 

We argue that such scalability problems are the result 

of a mismatch between the data access characteristics of the 

application and the technology (in this case, HTTP) used to 

implement the application. An election result server, such 

as that of the preceding scenario, is an example of a data 

dtssemination-oriented application. Data dissemination in- 

volves the delivery of data from one or more sources to a 

large set of consumers. Many dissemination-oriented ap- 

plications have data access characteristics that differ sig- 

nificantly from the traditional notion of client-server appli- 

cations as embodied in navigational web browsing technol- 

ogy. For example, the election result server has the follow- 

ing characteristics: 1) There is a huge population of users 

(potentially many millions) who want to access the data; 2) 

There is a tremendous degree of overlap among the interests 

of the user population; 3) Users who are Mowing the event 

closely are interested only in new data and changes to the 

existing data; and, 4) The amount of data that must be sent 

to most users is fairly small. When looking at these char- 

acteristics, it becomes clear that the request-response (i.e., 

RPC), unicast (i.e., point-to-point) method of data delivery 

used by HTTP is the wrong approach for this application. 

Using request-response, each user sends requests for data 

to the server. The large audience for a popular event can 

generate huge spikes in the load at servers, resulting in long 

delays and server crashes.   Compounding the situation is 
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thai users must continually poll the server to obtain the most 

current data, resulting in multiple requests for the same data 

items from each user. In this example application, where the 

desires of a large part of the population are known a priori, 

most of these requests are unnecessary. 

The use of unicast data delivery likewise causes problems 

in the opposite direction (from servers to clients). With uni- 

cast the server is required to respond individually to each 

request, often transmitting identical data. For an applica- 

tion with many users, the costs of this repetition in terms 

of network bandwidth and server cycles can be devastating. 

1.2    Is "Push" the Answer? 

The above scenario is well-known to web users and, not sur- 

prisingly, an increasing number of products are being intro- 

duced to address it. A number of these products have re- 

ceived tremendous media attention lately because they are 

based on a technology called data Push. Using data push, 

the transmission of data to users is initiated without requir- 

ing the users to explicitly request it. Examples of systems 

that employ some form of push technology include Point- 

cast, Marimba. BackWeb, and AirMedia. Push has also 

been added to recent versions of the major Web browsers, 

and the battle for data push standards is well underway. 

Systems that are truly implemented with data push can 

indeed solve some of the scalability problems attributed above 

to request-response. Since users do not have to poll servers 

for new and updated data, the number of client requests that 

must be handled by a server can be reduced dramatically. 

Simply changing from a client "Pull" model to a push model, 

however, does not solve all the problems for an application 

such as the election result server. In particular, performing 

push to millions of clients using a unicast communication 

protocol does little to address network bandwidth problems 

and still requires the server to perform substantial work for 

each client it is serving. Compounding the confusion is the 

fact that many systems that provide a "push" interface to 

users are actually implemented using a programmed polling 

mechanism. These systems simply save the user from hav- 

ing to click, but do nothing to solve the scalability problems 

caused by the request-response approach. 

The election result server is an example of just one type 

of dissemination-oriented application. Other examples in- 

clude news and entertainment delivery, software distribu- 

tion, traffic information systems, and navigational web brows- 

ing. These applications differ widely in the characteris- 

tics of the data involved (e.g.. size, consistency constraints, 

etc.). access patterns, and communication channel proper- 

ties (e.g., symmetric vs. asymmetric, continuously or inter- 

mittently connected, etc.). No one data delivery mechanism 

can provide adequate support for the wide variety of such 

applications. 

To address this need, we are developing a general frame- 

work for describing and ultimately constructing Dissemination- 

Based Information Systems (DBIS). In this framework, push 

vs. pull is a choice along just one of several dimensions of 

the design space for data delivery mechanisms. In this pa- 

per, we outline a number of data delivery mechanisms and 

investigate the tradeoffs among them. The goal is to de- 

velop a flexible architecture that is capable of supporting 

a wide range of applications across many varied environ- 

ments, such as mobile networks, satellite-based systems, and 

wide-area networks. By combining the various data deliv- 

ery techniques in a way that matches the characteristics of 

the application and achieves the most efficient use of the 

available server and communication resources, the scalabil- 

ity and performance of dissemination-oriented applications 

can be greatly enhanced. 

1.3    Overview of the Approach 

We view an integrated DBIS as a distributed system in 

which the links between the computing elements vary in 

character: from standard pull-based unicast connections to 

periodic push over a broadcast channel. A key point is that 

the character of a link should be of concern only to the nodes 

on either end. For example, the fact that an information 

provider receives its data from a broadcast link as opposed 

to a request-response protocol should make no difference to 

clients of that provider. 

In our approach, we distinguish between three types of 

nodes: (1) data sources provide the base data for the ap- 

plication; (2) clients consume this information; and (3) t'n- 

Jormation brokers add value to information and redistribute 

it. By creating hierarchies of these nodes connected by var- 

ious data delivery mechanisms, the information flow can be 

tailored to the needs of many different applications. 

We aim to provide a toolkit of architectural components 

that can be used to construct a DBIS. A builder of an in- 
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formation resource would make use of these components to 

construct the interfaces to their service. Example compo- 

nents include a broadcast generator, a set of dissemina- 

tion services, a client cache manager, a client prefetcher. 

a backchannel monitor, etc. 

In the remainder of the paper we outline our current 

ideas on the development of such a toolkit. Section 2 de- 

scribes several options for data delivery mechanisms (i.e., 

the "links") and discussesthe tradeoffs among them. Sec- 

tion 3 addresses the various types of nodes in a DBIS. Sec- 

tion 4 uses the DBIS model to describe several existing 

dissemination-oriented systems. Section 5 outlines issues in 

the development of a DBIS toolkit. Section 6 lists related 

work. Finally. Section 7 presents our conclusions. 

2     Options for Data Delivery 

As stated in the Introduction, a key aspect of the DBIS 

framework is that it supports a wide variety of links for data 

delivery between sources and clients. Support for different 

styles of data delivery allows a DBIS to be optimized for 

various server, client, network, data, and application prop- 

erties. 

2.1     Three Characteristics 

We identify three main characteristics that can be used to 

compare data delivery mechanisms: (1) push vs. pull; (2) 

periodic vs. aperiodic; and (3) unicast vs. 1-to-N. Figure 1 

shows these characteristics and how several common mech- 

anisms relate to them. 

2.1.1     Client Pull vs. Server Push 

The first distinction we make among data delivery styles is 

that of "push vs. pull". Current database servers and object 

repositories manage data for clients that explicitly request 

data when they require it. When a request is received at 

a server, the server locates the information of interest and 

returns it to the client. This request-response style of opera- 

tion is pull-based— the transfer of information from servers 

to clients is initiated by a dient pull. In contrast, push-based 

data delivery involves sending information to a client popu- 

lation in advance of any specific request. With push-based 

delivery, the server initiates the transfer. 

2.1.2 Aperiodic vs. Periodic 

Both push and pull can be performed in either an aperi- 

odic or periodic fashion. Aperiodic delivery is erent-driven 

— a data request (for pull) or transmission (for push) is 

triggered by an event such as a user action (for pull) or 

data update (for push). In contrast, periodic delivery is 

performed according to some pre-arranged schedule. This 

schedule may be fixed, or may be generated with some de- 

gree of randomness.1 An application that sends out stock 

prices on a regular basis is an example of periodic push, 

whereas one that sends out stock prices only when they 

change is an example of aperiodic push. 

2.1.3 Unicast vs. 1-to-N 

The third characteristic of data delivery mechanisms we 

identify is whether they are based on unicast or 1-to-N com- 

munication. With unicast communication, data items are 

sent from a data source (e.g., a single server) to one other 

machine, while 1-to-N communication allows multiple ma- 

chines to receive the data sent by a data source. Two types 

of 1-to-N data delivery can be distinguished: multicast and 

broadcast. With multicast, data is sent to a specific sub- 

set of clients. In some systems multicast is implemented by- 

sending a message to a router that maintains the list of re- 

cipients. The router reroutes the message to each member 

of the list. Since the list of recipients is known, it is pos- 

sible to make multicast reliable; that is, network protocols 

can be developed that guarantee the eventual delivery of 

the message to all clients that should receive it. In contrast, 

broadcasting sends information over a medium on which an 

unidentified and unbounded set of clients can listen. This 

differs from multicast in that the clients who may receive 

the data are not known a priori. 

2.2    Classification of Delivery Mechanisms 

It is possible to classify some existing data delivery mech- 

anisms using the characteristics described above. Such a 

classification is shown in Figure 1. We discuss several of the 

leaves in this diagram below. 

1 For the purposes of thi» discussion, we do not distinguish between 
fixed and randomized schedules. Such a. distinction is important in 
certain applications. For example, algorithms for conserving energy 
in mobile environments proposed by Imielinski et al. [Imie94b] depend 
on a strict schedule to allow mobile clients to "doze" during penods 
when no data of interest to them will be broadcast. 
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Figure 1: Data Delivery Options 

Request/Response - Traditional request/response mech- 

anisms use aperiodic pull over a unicast connection.   If in- 

stead, a 1-to-N connection is used, then clients can "snoop" 

on the requests made by other clients, and obtain data that 

they haven't explicitly asked for. 

Polling - In some applications, such as remote sensing, 

a system may periodically send requests to other sites to ob- 

tain status information or to detect changed values. If the 

information is returned over a 1-to-N link, then as with re- 

quest/response, other clients can snoop to obtain data items 

as they go by. 

Publish/Subscribe - Publish/subscribe protocols are 

becoming a popular way to disseminate information in a 

network [Oki93. Yan95. GlanOG]. Publish/subscribe is push- 

based: data flow is initiated by the data sources, and is ape- 

riodic, as there is no predefined schedule for sending data. 

Such protocols are typically performed in a 1-to-N fashion, 

but a similar protocol can be used over a unicast channel, 

as is done for triggers in active database systems. 

Broadcast Disks - Periodic push has been used for data 

dissemination in many systems such as TeleText [Amma85, 

WongSS], DataCycle [Henn87, Bowe92], Broadcast Disks 

[Acha95a, Acha95b] and mobile databases [lmie94a]. Clients 

needing access to a data item that is pushed periodically can 

wait until the item appears. As with aperiodic push, peri- 

odic push can also be used with both unicast and 1-to-N 

channels, but we believe that 1-to-N is likely to be much 

more prevalent. 

2.3    Some Example Tradeoffs 

As can be seen from the preceding discussion, the design 

space for data delivery mechanisms is quite large. Choos- 

ing the proper mechanism (or combination of them) to use 

for a given link requires an understanding of the tradeoffs 

among them. In a recent paper, we studied one such set 

of tradeoffs; namely, those between broadcasting data using 

periodic push (Broadcast Disks) and aperiodic pull (request- 

response with snooping) [Acha97]. Here, we briefly discuss 

some observations from that study. 

The tradeoffs between push and pull in general revolve 

around the costs of initiating the transfer of data. A pull- 

based approach requires the use of a backchannel for each 

request. Furthermore, as described in the Introduction, the 

server must be interrupted continuously to deal with such 

requests and has limited flexibility in scheduling the order of 

data delivery. Also, the information that clients can obtain 

from a server is limited to that which the clients know to 

ask for. Thus, new data items or updates to existing data 

items may go unnoticed at clients unless they periodically 

poll the server. 

Push-based approaches, in contrast, avoid the issues iden- 

tified for client-pull, but have the problem of deciding which 

data to send to clients in the absence of specific requests. 

Clearly, sending irrelevant data to clients is a waste of re- 

sources. A more serious problem, however, is that in the 

absence of requests it is possible that the servers will not 

deliver the specific data needed by clients in a timely fashion 

(if ever). Thus, the usefulness of server push is dependent 

on the ability of a server to accurately predict the needs of 

clients. One solution to this problem is to allow the clients 

to provide a profile of their interests to the servers. As men- 

tioned above, Publish/subscribe protocols are one popular 

mechanism for providing such profiles. 

In [Acha97] we studied a hybrid push/pull broadcast sys- 

tem. In this system, a broadcast server is responsible for 

allocating a fixed broadcast bandwidth between data items 

(pages) that are broadcast according to a fixed schedule (i.e., 

periodic push) and pages that are broadcast in response to 
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dient requests sent over a backchanne) (i.e., aperiodic pull). 

The fundamental performance tradeoff between these two 

approaches can be seen in in Figure 2. which shows results 

from [Acha97]2. The x-axis in the figure models the number 

of clients (all having identical access rates and distributions) 

that are accessing data from the broadcast. Thus, at a value 

of 250. the broadcast is serving 25 times as many clients than 

at a value of 10. The y-axis indicates the average number 

of items that a client must watch go by on the broadcast 

before the item it wants appears. 

g 
CO 

25 50 100 
Think Time Ratio 

250 

Figure 2: Push vs. Pull for Broadcast 

The fiat line in the figure (marked by diamonds) indi- 

cates the performance of a pure push approach, in which all 

data is broadcast repeatedly with no requests sent by the 

clients. This figure was generated using a skewed (Zipfian) 

access pattern over 1000 items. The broadcast schedule used 

by the push approach was tailored to support a skewed ac- 

cess pattern through the use of Broadcast Disks which allow 

the frequency of broadcast, for an item to be based on that 

item's popularity [Acha95a, Acha95b]. As can be seen in 

the figure, the performance of pure push is independent of 

the number of clients listening to the broadcast here. This 

is a fundamental property of data broadcast using periodic 

push — if there is a large overlap in the interests of clients, 

it provides tremendous scalability in terms of client popula- 

tion. 

The other curve in the figure (marked by boxes) shows 

the Tvrformnp''«' of s null-based approach, in which clients 

submit requests to the server via the backchannel, and the 

2 We briefly summarise these results here, interested readers are 
referred to [Acha97]for more details 

server broadcasts the requested pages in FIFO order. As 

can be seen in the figure, the pull-based approach exhibits 

an S-shaped behavior — it provides extremely fast response 

time for a lightly loaded server, but as the server becomes 

loaded, its performance degrades, until it ultimately stabi- 

lizes (in this case, at a value of 500 items, or half the size of 

the database being broadcast here). 

The behavior of aperiodic pull in this case can be ex- 

plained as follows. With a lightly loaded system, the server 

is typically idle so it can respond immediately when a re- 

quest is received. As the load increases, however, the server 

saturates and becomes less responsive. Compared to peri- 

odic push, it is clear that aperiodic pull demonstrates less 

scalability in this case. It is, however, important to note 

that aperiodic pull over a unicast channel would be far less 

scalable — wait time would increase in an unbounded fash- 

ion as the server approached saturation. In contrast us- 

ing broadcast, the performance of aperiodic pull eventually 

flattens out in this case, because of the overlap in the in- 

terests of the client population. Once the server reaches the 

state where all data items are in the FIFO queue, additional 

clients receive all of their data by simply "snooping" on the 

broadcast. In this case the performance of aperiodic pull 

at saturation is worse than that of periodic push, because 

the broadcast schedule generated by the FIFO discipline is 

less well suited to the access pattern than the pre-computed 

schedule used by periodic push. As discussed in [Acha97], 

the problems of pull can be exacerbated if the server drops 

client requests when it becomes overloaded. 

The tradeoffs described above give an indication of the 

kinds of concerns that must be balanced when choosing the 

proper data delivery mechanism for a given situation. An- 

other set of options arises in the organization of the nodes 

for a DB1S, as described in the following section. 

3    Design Options for Nodes 

While the discussion so far has focused on the ways in which 

data is communicated between computing devices, the nodes 

in a Dissemination-Based Information System play a crucial 

role as well: the nodes provide the glue that pastes var- 

ious data distribution schemes together. A DBIS toolkit 

should contain classes that model some of the basic features 

'Because a single broadcast of an item satisfies all clients waiting 
for that item, we do not enqueue a request for an item that is already 
in the FIFO queue. 
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of nodes. This section outlines some of those features. 3.2    Caching 

3.1     Classification 

In an integrated DBIS. there will be three types of nodes: 

(1) data sources, which provide the base data that is to be 

disseminated: (2) clients, which are net consumers of infor- 

mation: and (3) :nformnlion brokers, that acquire informa- 

tion from other sources, add value to that information (e.g., 

some additional computation or organizational structure) 

and then distribute this information to other consumers. By 

creating hierarchies of brokers, information delivery can be 

tailored to the needs of many different users. 

Information brokers perform many important functions 

in our architecture. While the previous discussion focused 

primarily on different modes of data delivery, the brokers 

provide the glue that binds these modes together. It is typ- 

ically the expected usage patterns of the brokers that will 

drive the selection of which mode of delivery to use. For 

example, a broker that typically is very heavily loaded with 

requests could be an excellent candidate for a push-based 

delivery mechanism to its clients. 

As we move upstream in the data delivery chain, brokers 

look like data sources to their clients. Receivers of informa- 

tion cannot detect the details of interconnections any further 

upstream than their immediate predecessor. This principle 

of network transparency allows data delivery mechanisms to 

change without having global impact. Suppose that node B 

is pulling data values from node A on demand. Further, sup- 

pose that node C is listening to a cyclic broadcast from node 

B which includes values that B has pulled from A. Node 

C will not have to change its data gathering strategy if A 

begins to push values to B; changes in links are negotiated 

purely between the two nodes involved. 

Of course, nothing is ever simple. In some cases, brokers 

can also be sources by maintaining their own databases. In 

this case, the hybrid broker can add data of its own to what 

it receives from its upstream counterparts. The principle 

of network transparency also protects clients from having 

to depend on this situation. A data source, be it a pure 

source, a broker, or a hybrid source, only guarantees that it 

can provide specific data — independently of where it comes 

from. 

While nodes can perform many functions, the most ubiqui- 

tous data management facility is caching. Unlike caching in 

client-server systems, the path from data sources to a client 

can be of length greater than two. Thus, items might be 

cached at any of many points along the data path in the 

network. Thus, caching in this context resembles the kind 

of proxy caching that one might find in a wide-area network 

(e.g., the Internet). 

While the problems here are very similar to those of 

any proxy caching scheme, the broad view of data move- 

ment available in a DBIS makes the potential solutions much 

richer. For example, if there are copies of a particular data 

item in multiple caches, there will always be an issue of 

how those copies are refreshed when the primary copy is 

updated. One solution is to send invalidations to each client 

cache manager. An invalidation message results in the purge 

of the item from the cache. Alternatively, the new value 

could be propagated to the client cache managers. For typ- 

ical client/server systems, invalidation is usually preferable. 

However, in our broadcast disk studies [Acha96b] we showed 

that for periodic broadcast, performance can often be im- 

proved using propagation. 

The decision about how current to keep the cached copies 

is the same as in other caching mechanisms. Once that has 

been decided, the means by which it is achieved can vary. 

In a DBIS, we could propagate (i.e., push) the changes to 

the clients or wait for the client to request the item again 

(i.e., pull). In the latter case, if a cache manager cares about 

keeping items very current, it will have to poll the state of 

the object often. It is interesting to note that if the data 

delivery mechanism in a DBIS changes, the means by which 

updates are propagated (or not) may also need to change. 

Deciding which object to evict from the cache when a 

new candidate arrives is another issue that must be ad- 

dressed by any cache manager. Many systems use some 

form of LRU for this purpose. We have shown in previous 

work [Acha95a] that for some styles of data delivery (e.g., 

broadcast disks), LRU is not the most effective choice. For 

cyclic data delivery, in which different items can have dif- 

ferent arrival frequencies, a cost-based caching scheme per- 

forms significantly better. 

In a DBIS, the modes of data delivery might change. 

In such an environment, the caching policy could change 

65 



to match the prevailing conditions. We will need heuristics 

for deciding the appropriate caching policies for a particular 

configuration of distributed components. As an example, if 

node B initially pulls data from node .4. B might reasonably 

use LRU as its caching policy. When A creates a broadcast 

disk which is read by B, B might then change its caching 

policy to a cost based scheme similar to the one that we 

propose in [Acha95a]. 

3.3    Value-Added Nodes 

Some nodes may also add value to data as it passes through, 

by performing specific computations on that data. The com- 

putations can be simple or complex, or they can act on single 

values or sets of values. Other nodes may simply pass values 

on to other nodes. 

As an example, suppose node A pushes stock prices for 

Fortune 500 companies that are picked up by node B. Node 

B keeps a database of previous stock prices and when a new 

price for the day is picked up from node A. it calculates the 

difference between the most current price and yesterday's 

close, and pushes this value out to yet another community. 

Node B is a push-based, value-added server. Of course, it 

need not be based on push. Other clients could pull stock 

deviations from B as well. 

Another kind of value-added service that a node can per- 

form is merging of values from multiple sources. Merging can 

occur in several ways. The first involves multiple sources 

that maintain similar information. The merge node can 

make the most reliable or most current version of a value 

available. Alternatively, multiple sources may maintain a 

set of values which the merge node combines to a single 

value. An example of this might involve nodes that maintain 

demographic information for towns including their current 

population. Another node may read these values and con- 

solidate them into a single population figure for the state. 

Nodes can also perform the service of filtering. A filtering 

node will receive a large volume of data from another node, 

only some fraction of which it makes available to its clients. 

For example, a node could receive all stock prices from the 

NYSE and provide information about only the Fortune 500 

stocks to its clients. 

3.4    Recoverable Nodes 

Often it will be useful to make guarantees about the reliabil- 

ity of some node. Thus, nodes that implement some degree 

of recoverability will be a useful component in a DB1S. Con- 

sider a node that must guarantee the delivery of the latest 

version of IBM's stock price. Such a node must not lose its 

information in the event of a failure. That is, if the informa- 

tion was received, then the node must be able to guarantee 

that it will eventually be made available to its clients. 

Of course, having recoverable brokers is not enough on 

its own to guarantee that nodes will not miss disseminated 

information while they are down. In order to address this 

issue, a scheme like reliable multicasting would have to be 

used. Reliable multicasting will eventually deliver all mes- 

sages, but it cannot make real-time guarantees about when 

an object will arrive. 

3.5    The Burden of Push 

As mentioned in Section 2.3, any node that provides a push 

service must do so on the basis of some knowledge of the 

access patterns of its client base. If the node pushes data 

that few clients care about, then bandwidth is wasted. The 

trick is to broadcast items that are of interest to a large 

segment of the user community. This, of course, is only- 

possible if there is high commonality of interest for at least 

some data items. 

In order to optimize its push schedule, the server must 

rely on profiles of user needs. Profiles could be learned by 

servers if clients provide feedback about the effectiveness of 

the push schedule. Alternatively, a client could communi- 

cate a profile to the server at appropriate times, such as 

when it begins to listen to the push, at regularly scheduled 

intervals, or whenever the client notices that the current 

schedule deviates significantly from what it would like to 

see. 
What would such a profile look like? A profile is very 

much like a continuously executing query [Terr92]. In other 

words, it is a predicate that indicates the items that the 

client would like to see. It is continuously executing because 

the server will push items as long as there are currently valid 

profiles that match the items. 

Profiles can be interpreted to mean that whenever a new 

item is added to the database that matches a profile, the 

owner of that profile will receive the new data.    On the 
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olher hand, the profile could be treated more as a hint to 

the server indicating interest with no requirement on the 

server's part to send matching items. In this case, the server 

may choose to conserve bandwidth and not send a matching 

item in order to best serve the client community as a whole. 

4    Systems Viewed as DBIS 

In this section, we describe some existing systems using the 

concepts of our DBIS framework. 

4.1    PointCast 

PointCast is a dissemination service that has attracted a 

large population of users. It obtains profiles from users 

that describe their interests, and then uses these profiles 

to assemble and update customized "newspapers" from a 

database of current stories. 

The PointCast system has been touted as one of the first 

push-based systems. This is not exactly true. Other sys- 

tems such as Teletex [AmmaSö]. BCS at MIT [Giff90], and 

Datacycle [Herm87] used push long before PointCast. How- 

ever. PointCast was one of the first push-based systems to 

achieve wide-spread use. It is instructive, therefore, to see 

exactly how push is used in PointCast 1.0 4. 

From the point of view of a DBIS, the use of push within 

PointCast is extremely limited. In fact, in terms of the net- 

work architecture, push is non-existent; that is, the flow 

of requests and responses within the global architecture is 

pull-based. The PointCast client on a user's workstation 

generates requests for news stories that match the user's 

profile. For example, if the user indicates an interest in the 

computer industry, the PointCast client polls the PointCast 

server for news stories with the keyword "computer indus- 

try" whenever the PointCast screen saver is enabled. All of 

these requests can generate lots of network traffic. 

So, where's the push? If we look at Figure 3, we see 

that there are essentially two processes in the client ma- 

chine. One of these processes is responsible for pulling the 

latest news stories down to the user's machine, and the 

other is responsible for displaying these stories on the user's 

screen. The push really occurs between these two compo- 

nents. When the pull-based story acquisition module gets 

a new story, it pushes it to the screen manager.  From the 

4 Hereafter, referred to u Pointcait. 

user's point of view, this is push because things are happen- 

ing to the screen without any intervention. The use of push 

as a technique for managing heavy network loads, however, 

is not part of the design. 

4.2 Broadcast Disks 

Our own work on broadcast disks is based on a model of 

data delivery that is virtually the direct opposite of that 

described above for PointCast (see Figure 4). 

In our model, an application process on the client work- 

station behaves exactly as it would in a traditional pull- 

based environment. It generates pull requests as it needs 

data and blocks until that data is received. 

The server, however, proactively sends data to the client 

community in advance of any request (i.e., push). A process 

on the client listens to the broadcast stream and picks up 

data items for which the application might be waiting Thus, 

the places where pushes and pulls happen have been inverted 

over the PointCast case. 

It should be noted that in the broadcast disk case, the 

push is periodic and is scheduled by the server. In the Point- 

cast case, the pull is also periodic, but the interval is set by 

the user. 

4.3 SIFT 

The SIFT [Yan95] system was developed at Stanford Univer- 

sity as a way to disseminate documents to a user community. 

SIFT combines data management ideas from information 

retrieval with a publish/subscribe model for dissemination. 

We describe the way the publish/subscribe model works in 

terms of our DBIS architecture. 

Looking at Figure 5, we see three active components: the 

document source, the SIFT server, and a SIFT client (one of 

potentially many). The connection between the document 

source and the SIFT server (on the left side of the figure) is 

push-based, unicast, and aperiodic. The document source 

could alternatively deliver new documents through a 1-to- 

n broadcast medium, such as a satellite feed, if there were 

multiple interested recipients (SIFT servers or otherwise). 

A backchannel (not shown in the figure), is used only to set 

up the initial connection. Thereafter, the document source 

forwards all new documents to the SIFT server. There is no 

filtering that happens on this link. We could think of the 

profile held at the document source for the SIFT server as 
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being send everything. 

The connection between the SIFT server and a given 

SIFT client (shown on the right side of the figure) is also 

push-based, unicast. and aperiodic. In this case, though, the 

client profile that is held at the SIFT server is customized for 

each client. It consists of a series of keywords and weights 

that describe documents of interest to that client. The SIFT 

server provides novel technology for indexing client profiles. 

Such an index is used for matching profiles against newly ar- 

riving documents. This indexing technique allows the server 

to accommodate a large client population with reasonable 

performance. The original SIFT prototype disseminated en- 

tire articles to clients. With the existence of the web, it 

becomes possible to send short article descriptions plus the 

corresponding URLs to conserve bandwidth. 

It should be noted that clients get exactly what their 

profiles specify and nothing more. This is in contrast to a 1- 

to-n (broadcast) style of delivery in which all clients see the 

same information stream. It is the server's responsibility to 

optimize this stream to suit the needs of the largest number 

of users. It is unlikely that such a stream will be optimal 

for any one user. 

5    Putting it All Together 

In the preceding discussion, we described a vision of how dis- 

tributed information systems should be built in the future. 

Our framework focused on techniques for delivering data in 

wide-area network settings in which nodes and links reflect 

extreme variation in their operating parameters. By adjust- 

ing the delivery mechanism to match these characteristics. 

we believe that we can achieve high performance and scala- 

bility without the need to invest in additional hardware. In 

this section, we briefly discuss our approach to this problem 

and outline some of the open research questions. 

5.1     Toolkit Approach 

We intend to realize our solutions to the problems of design- 

ing a DBIS through a toolkit that provides the proper com- 

ponents from which any DBIS could be built. This toolkit 

can be thought of as a set of object classes that support 

concepts such as network connections and local caches. 

A key part of the toolkit will be a set of classes to allow 

distributed nodes to negotiate in order to establish a proper 

connection. This is required at several levels. At the highest 

level, the nodes must agree on how data is to be transferred. 

A client node that is relying on data from some server must 

know whether that server will be using push or accepting 

requests. There are also handshaking protocols that must 

occur at lower levels. For example, if a push-based broadcast 

connection is to be established in an Ethernet, the nodes 

must agree on which Ethernet address will be used for that 

broadcast. The parties must also agree on the parameters 

that will be used to configure that broadcast. For example, 

if it is a broadcast disk, the frequency of broadcast of each 

item is of interest to the clients. 

The usefulness of a toolkit will rely on the precise defi- 

nition of the DBIS classes. These classes must be of general 

utility.   Also, as indicated in Section 2.3, the definition of 
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these classes must be based on a substantial body of exper- 

imental results that help to delineate the sometimes subtle 

tradeoffs. 

5.2 Dynamic Reconfiguration 

A network can be characterized by prevailing loads on the 

nodes and the connections. This characterization changes 

rapidly, and a responsive DBIS must be able to adapt to 

these changes. Thus, our vision of a fully functional DBIS 

includes facilities to support the dynamic reconfiguration of 

the data delivery mechanisms. 

A key element of a reconfiguration facility is a statis- 

tics gathering component that collects the right performance 

numbers and that can intelligently select among the avail- 

able delivery options. This is not a simple matter. Our pre- 

vious experiments in the area of broadcast disks has shown 

that the design space here is very complex with many places 

in which intuitions from more traditional distributed system 

design often produces poor results. 

5.3 Some Design Issues 

In addition to the plumbing issues that we have discussed 

so far, there are some higher-level issues that must be ad- 

dressed in developing an integrated DBIS. In the following, 

we briefly outline some of these issues: 

• Bandwidth Allocation - For a given link, policies are 

needed for allocating bandwidth among the various 

data delivery mechanisms. 

• Push Scheduling - For the push-based approaches, in- 

telligent scheduling is necessary in order to obtain the 

maximal benefit from the available bandwidth. Schedul- 

ing must also take into account the likelihood and 

distribution of tiausmission errors. Also, for periodic 

push, the broadcast should include index and/or sched- 

ule information that describes the objects that are to 

ajjpeaj in the upcoming broadcast. Such information 

allows clients to minimize the amount of time and/or 

processing they devote to monitoring the broadcast 

and can aid in storage management decisions. 

• Client Storage Management - Clients must allocate 

their storage resources among the data obtained through 

the various delivery mechanisms. Furthermore, as stated 

earlier, different methods of data delivery impose dif- 

fering demands on the policies for client caching and 

prefetching. Furthermore, in some cases (e.g., mobil- 

ity), storage management must also take into account 

the likelihood of disconnection and of data becoming 

stale due to updates or expiration. 

• User Profiles and Feedback - Profiles of client needs are 

key for making allocation, scheduling and other policy 

decisions at both clients and servers. The form of the 

profiles will be important to achieve the most effective 

use of the medium. For example, access probabilities 

are one specific representation of the client needs. The 

server must also have effective models for combining 

client profiles. The integration of a backchannel from 

clients to servers is needed to allow for updating pro- 

files and making additional requests. 

• Security Issues - Another set of important issues that 

must be addressed revolves around the security and 

privacy concerns that arise in any distributed infor- 

mation system. The emphasis on one-to-N communi- 

cation in a DBIS, however, increases the significance 

of such issues. 

• Consistency Issues - The final issue we list here is the 

maintenance of data consistency, particularly in the 

face of possibly intermittent connection. Two types of 

consistency must be considered. First, guarantees on 

the timeliness of individual data items must be pro- 

vided if required by the clients. Second, mutual con- 

sistency across multiple items will be required in some 
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instances. AU type? of consistency must be provided 

in a flexible manner, so that tradeoffs between consis- 

tency and responsiveness can be made on a case-by- 

case basis. 

6    Related Work 

Work on distributed object computing has generated many 

important standards and systems. CORBA [OMG91] and 

DCE [OSF9-J], for example, are two important approaches 

to system interoperability. This work is not incompatible 

with the notion of a DB1S. A DB1S can be thought of as 

infrastructure for such object-oriented middleware. 

There is much previous work that relates to the archi- 

tectural issues of a DB1S. The brief discussion that follows 

samples some of the work that is most related to the issues 

presented in this paper. 

The management of data in distributed settings has a 

long history. The preponderance of previous work assumes 

that data is requested when needed (i.e.. pull) and that 

servers respond to these requests in an orderly fashion. Some 

of this work has occurred in a client/server database setting 

[Fran96a] while other work has been done in the distributed 

file system context [Levy90]. There has been a lot of work 

on caching in these environments, much of which has fo- 

cused on the maintenance of cache consistency in the face 

of updates. 

More recently, there has been work on data management 

issues for wireless environments [Katz94]. Some of work 

in this area has focused on satellite-based systems [Dao96, 

Dire96] in which the downstream bandwidth is quite high. 

The idea of the publish/subscribe model as a dissemina- 

tion mechanism has been used in many contexts including 

SIFT [Yan95] and the Information Bus[Oki93]. 

There has also been work on broadcasting in Teletex sys- 

tems [Amma85, Wong88]. [Wong88] presents an overview 

of some of the analytical studies on one-way, two-way and 

hybrid broadcast in this framework. 

The Datacycle Project [Bowe92, Herm87] at Bellcore in- 

vestigated the notion of using a repetitive broadcast medium 

for database storage and query processing. An early ef- 

fort in information broadcasting, the Boston Community 

Information System (BCIS) is described in [GiffQO]. BCIS 

broadcast news articles and information over an FM chan- 

nel to clients with personal computers specially equipped 

with radio receivers. Both Datacycle and BCIS used a flat 

broadcast (i.e., all items have the same frequency). The mo- 

bility group at Rutgers [Imie94a, Imie94b] has done signifi- 

cant work on data broadcasting in mobile environments. A 

main focus of their work has been to investigate novel ways 

of indexing in order to reduce power consumption at the 

mobile clients. Some recent applications of dissemination- 

based systems include information dissemination on the In- 

ternet [Yan95, Best96], and Advanced Traveler Information 

Systems [Shek96]. 

Our work on Broadcast Disks differs from these in that 

we consider multi-level disks and their relationship to cache 

management. In [Acha95a], we proposed an algorithm to 

generate Broadcast Disk programs and demonstrated the 

need for cost-based caching in this environment. Recently, 

[Baru96] gave an algorithm to determine the parameters 

controlling a broadcast program. In [Acha96a], we showed 

how opportunistic prefetching by the client can significantly 

improve performance over demand-driven caching. More re- 

cently, in [Acha96b], we studied the influence of volatile data 

on client performance and showed that the Broadcast. Disk 

environment can be made very robust in the presence of up- 

dates. In [Acha97], we explored the tradeoff between cyclic 

broadcast and pull. 

7    Conclusions 

The increasing ability to interconnect computers through 

internetworking, mobile and wireless networks, and high- 

bandwidth content delivery to the home, has resulted in 

a proliferation of dissemination-oriented applications. A 

key attribute of many such applications is their huge scale. 

These applications present new challenges for data manage- 

ment throughout all components of a distributed informa- 

tion system. We have proposed the notion of a dissemination- 

based information system that integrates many different data 

delivery mechanisms and types of information brokers. We 

described some of the unique aspects of such systems and 

discussed how several existing dissemination-based architec- 

tures fit in to the DBIS model. 

The ideas presented in this paper have grown out of our 

previous work on the Broadcast Disks paradigm for data 

delivery. A key lesson from that work was the importance 

of applying a data management perspective to distributed 

systems architecture issues.   We are currently completing 
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a prototype that combines the push-based Broadcast Disks 

with a pull-based broadcast model. We vie«- that proto- 

type as the first step in the development of a generic DBIS 

toolkit that will support the creation of a variety of large- 

scale dissemination-based applications across several differ- 

ent communication media. 
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Abstract 

Push technology has recently generated a tremendous 
amount of media attention, commercial activity, and contro- 
versy. The wide range of opinions on push is understand- 
able given that it represents a major departure from the way 
distributed information systems have traditionally been built. 
Adding to the noise, however, is confusion about the basic 
principles of push and where it fits in to the world of data de- 
livery. For example, many discussions on the topic blur the 
distinction between push and broadcast. We argue that this 
confusion stems from two fundamental causes: First, push 
is just one dimension of a larger design space of data deliv- 
ery mechanisms. Second, networked information systems can 
employ different data delivery options between different sets 
of information producers and consumers. In this short paper 
we characterize the design space for dissemination-based in- 
formation systems and applications, and show how current 
"push " solutions fit into this space. We then use this frame- 
work highlight how the implementation of current Internet- 
based push solutions differs from the appearance that they 
present to users. 

1    Introduction 

Push technology stems from a very simple idea. Rather than 
requiring users to explicitly request (i.e., "pull") the informa- 
tion that they need, data can be sent to users without hav- 
ing them specifically ask for it. The advantages of push are 
straightforward. The traditional pull approach requires that 

'This work has been partially supported by Rome Labs agree- 
ment number F30602-97-2-0241 under DARPA order number 
F078. by the NSF under grant IRI-9501353, and by research grants 
from Intel and NEC. 

To anpear in the ACM SIGMOD International Confer- 
ence on the Management of Data, Seattle, WA, June, 
1998.  

users know a priori where and when to look for data or that 
they spend an inordinate amount of time polling known sites 
for updates and/or hunting on the network for relevant sites. 
Push relieves the user of these burdens. The problems of 
push are also fairly obvious. Push transfers control from the 
users to the data providers, raising the potential that users re- 
ceive irrelevant data while not receiving the information they 
need. These potential problems can arise due to issues rang- 
ing from poor prediction of user interests to outright abuse 
of the mechanism, such as "spamming". The "in-your-face" 
nature of push technology is the root of both its potential ben- 
efits and disadvantages. 

Push technology has been around in various forms for as 
long as people have been communicating. Examples range 
from newspapers, to telephones, to radio and television, to 
E-mail. Early work on using computer networks for pushing 
data was performed in the 1980's. The Boston Community 
Information System at MIT [Giff90], Teletext systems for 
distributing data over broadcast media [Amma85, Wong88], 
and the Datacycle database machine [Herm87], are all exam- 
ples of systems that incorporated some form of push technol- 
ogy. Recently, however, the combination of push technology 
with the Internet and Web (sometimes referred to as Webcast- 
ing) has generated a ground swell of excitement, commercial 
activity, and controversy. 

1.1   The Push Phenomenon 
In February 1996, PointCast made its client software avail- 
able for free downloading over the Internet, setting off a 
wave of interest in push technology. The idea was appeal- 
ing: rather than using your idle desktop machine as a dis- 
play ground for flying toasters, PointCast would turn it into 
an active information terminal that would display headlines, 
weather forecasts, stock prices, sports scores, etc., with the 
appearance of having real-time updates. By specifying apro- 
ße, users could indicate their interests to the system, and the 
display would be tailored to these interests. 

For anyone who tried the software, the reaction was im- 
mediate; this represented a paradigm shift in the way one 
could think about using the Internet as an information deliv- 
ery tool. Push technology on the Internet represented a new 
and untapped medium. The computer trade press became in- 
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undated with articles about push technology and dozens of 
companies touting push-based solutions arrived on the scene. 
A new jargon of data delivery was developed, with terminol- 
ogy borrowed from broadcast media. Users of push technol- 
ogy could rune into channels that contained broadcasts of in- 
formation on particular topics. 

By the end of 1996. the excitement had spilled over into 
the mainstream press. A steady stream of articles about push 
technology appeared in venues such as the New York Times 
and the Wall Sneer Journal* In February 1997, Business 
Week magazine published a Special Report section entitled 
"A Way Out of the Web Maze", which argued that Webcast- 
ing could solve many of the Web's problems, such as infor- 
mation overload and the inability for users to find the data 
they need. Similar sentiments were echoed by numerous ven- 
dors and technology pundits. 

The peak of the media hype for push technology was 
reached in March of 1997 when the cover article of Wired 
magazine blared: "Push! Kiss your browser goodbye". This 
article began by declaring: "Remember the browser war be- 
tween Netscape and Microsoft? Well forget it. The Web 
browser itself is about to croak. And good riddance.". While 
the article was certainly provocative and clearly overstated, 
the argument it made was simply that push technology would 
change the Web from a passive library of information into 
a networked, immersive medium for information and enter- 
tainment delivery. Despite this simple message, the article 
seemed to epitomize both the promise of push technology and 
the potential for overselling its virtues. 

1.2    The Inevitable Backlash 

Around the time of the Wired article, the voices of dissent 
began to make themselves heard. A March 1997 New York 
Times CyberTimes article by James Gleick stated: "... the 
promotion of Push is the silliest piece of puffery to waft 
along in several seasons. ... The failure of Push is preor- 
dained". A July 1997 article in the on-line net-zine webmon- 
key (published by the same company that publishes Wired), 
was entitled simply "Why Channels Suck". A somewhat 
more technical article at the CNET on-line site entitled "Net- 
works Strained By Push", described a study indicating that 
push technologies were using an inordinate portion of corpo- 
rate network bandwidth. Finally, a Byte magazine article in 
August 1997 had the tag line: "Web push technology is ex- 
ploding — even though there's no such thing.". The Byte ar- 
ticle went on to explain (correctly) that current push technol- 
ogy is "really pull++". 

1 Many of these articles had titles such as "When Push Comes to 
Shove", "The Pull of Push", or "X Gets Pushy" (where X is some 
product or company). The observant reader will notice that we have 
resisted such temptations for this paper. 

1.3 The Current Situation 

Recently, the media turmoil over push has settled down and 
expectations for the technology (at least for the short term) 
have lowered to arguably more reasonable levels. Still, the 
commercial activity in the area is impressive. As of Jan- 
uary 1998, a register of push technology vendors listed 49 
companies with announced products (see David Strom's site 
at http://www.strom.com/imc/t4a.html). Many other com- 
panies who have not yet announced products are working 
on push-based solutions. The major web browser vendors, 
Netscape and Microsoft, have both incorporated push into 
their products. 

A development indicating a degree of maturation of the 
field is Microsoft's proposal of the Channel Definition For- 
mat (CDF) standard to the World Wide Web Consortium 
(W3C). CDF is a language that web publishers can use to turn 
their content into "Channels" that can be exploited by push 
(or "pull++") technologies. CDF allows the specification of 
metadata about a website, including a searchable title and ab- 
stract and information about the structure and update sched- 
ule of the site. A number of the major push vendors such as 
PointCast, BackWeb, and AirMedia have expressed support 
for the proposed standard. Such a standard raises the poten- 
tial for push technology to be more widely integrated into the 
fabric of the Internet. 

1.4 Sorting it All Out 

The wide range of opinions on the pros and cons of push tech- 
nology is understandable, given the fact that it is a major de- 
parture from the way distributed information systems have 
traditionally been built. Adding to the noise, however, is a 
wide-spread confusion about the basic principles of push and 
where it fits in to the world of data delivery. In this short pa- 
per we argue that this confusion stems from two fundamen- 
tal causes: First, push is just one dimension of a larger de- 
sign space of data delivery mechanisms. We identify three 
dimensions for data delivery mechanisms (push vs. pull is 
one of them) and show how different choices along these di- 
mensions interact. Second, networked information systems 
can employ different data delivery options between different 
sets of information producers and consumers. Thus, complex 
systems will likely contain mixtures of push and pull (along 
with the other options) at various points in the network. In 
such a situation, it is inappropriate to identify an entire sys- 
tem as being "push-based" or "pull-based". 

In the following, we present an overview of our ideas on 
data dissemination in order to provide a framework for think- 
ing about push technology in the larger context of networked 
information systems. Our intent is to clarify some of the is- 
sues surrounding push technology and to characterize the de- 
sign space for data delivery in dissemination-based informa- 
tion systems and applications. 
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2   Fundamental Properties 

In this section, we present an overview of data delivery, fo- 
cusing on how the notion of data push fits in with the other di- 
mensions of the design space for delivery mechanisms. We 
then describe why it is often inappropriate to refer to com- 
plex distributed systems as simply "push-based" or "pull- 
based". A more detailed discussion of these issues can be 
found in [Fran97]. 

2.1    Options for Data Delivery 

Support for different styles of data delivery allows a dis- 
tributed information system to be optimized for various 
server, client, network, data, and application properties. We 
have identified three main characteristics that can be used to 
compare data delivery mechanisms: (1) push vs. pull; (2) pe- 
riodic vs. aperiodic; and (3) unicast vs. 1-to-N. While there 
are numerous other dimensions that should be considered, 
such as fault-tolerance, ordering guarantees, error properties, 
network topology, etc., we have found that these three char- 
acteristics provide a good initial basis for discussing many 
popular approaches. In particular, we argue that all three of 
these characteristics must be considered in order to make in- 
telligent choices about delivery mechanisms for specific situ- 
ations. Figure 1 shows these characteristics and how several 
common mechanisms relate to them. 

2.1.1 Client Pull vs. Server Push 

We first focus on push vs. pull. Current database servers and 
object repositories manage data for clients that explicitly re- 
quest data when they require it. When a request is received 
at a server, the server locates the information of interest and 
returns it to the client. This request-response style of opera- 
tion is pull-based — the transfer of information from servers 
to clients is initiated by a client pull. In contrast, as discussed 
in the introduction, push-based data delivery involves send- 
ing information to a client population in advance of any spe- 
cific request. With push-based delivery, the server initiates 
the transfer. 

2.1.2 Aperiodic vs. Periodic 

Both push and pull can be performed in either an aperiodic or 
periodic fashion. Aperiodic delivery is event-driven — a data 
request (for pull) or transmission (for push) is triggered by an 
event such as a user action (for pull) or data update (for push). 
In contrast, periodic delivery is performed according to some 
pre-arranged schedule. This schedule may be fixed, or may 
be generated with some degree of randomness.2 An applica- 

2 For the purposes of this discussion, we do not distinguish be- 
tween fixed and „mJomized schedules. Such a distinction is im- 
portant in certain applications. For example, algorithms for con- 
serving energy in mobile environments proposed by ImielinsKi et 

tion that sends out stock prices on a regular basis is an exam- 
ple of periodic push, whereas one that sends out stock prices 
only when they change is an example of aperiodic push. 

2.1.3    Unicast vs. 1-to-N 

The third characteristic of data delivery mechanisms is 
whether they are based on unicast or 1-to-N communication. 
With unicast communication, data items are sent from a data 
source (e.g., a single server) to one other machine, while 1- 
to-N communication allows multiple machines to receive the 
data sent by a data source.3 

Two types of 1-to-N data delivery can be distinguished: 
multicast and broadcast. With multicast, data is sent to a spe- 
cific subset of clients who have indicated their interest in re- 
ceiving the data. Since the recipients are known, given a two- 
way communications medium it is possible to make multi- 
cast reliable; that is, network protocols can be developed that 
guarantee the eventual delivery of the message to all clients 
that should receive it. In contrast, broadcasting sends infor- 
mation over a medium on which an unidentified and possibly 
unbounded set of clients can listen. 

2.2   Classification of Delivery Mechanisms 

It is possible to classify many existing data delivery mecha- 
nisms using the characteristics described above. Such a clas- 
sification is shown in Figure 1. We discuss several of the 
mechanisms below. 

Aperiodic Pull - Traditional request/response mecha- 
nisms use aperiodic pull over a unicast connection. If in- 
stead, a 1-to-N connection is used, then clients can "snoop" 
on the requests made by other clients, and obtain data that 
they haven't explicitly asked for (e.g, see [ Acha97, Akso98]). 

Periodic Pull - In some applications, such as remote sens- 
ing, a system may periodically send requests to other sites to 
obtain status information or to detect changed values. If the 
information is returned over a 1-to-N link, then as with re- 
quest/response, other clients can snoop to obtain data items as 
they go by. Most existing Web or Internet-based "push" sys- 
tems are actually implemented using Periodic Pull between 
the client machines and the data source(s). 

Aperiodic Push - Publish/subscribe protocols are be- 
coming a popular way to disseminate information in a net- 
work [Oki93, Yan95, Glan96]. In a publish/subscribe sys- 
tem, users provide information (sometimes in the form of a 

al. [Imie94] depend on a strict schedule to allow mobile clients 
to "doze" during periods when no data of interest to them will be 
broadcast 3 Some systems attempt to implement a 1-to-N style of data de- 
livery using unicast (i.e., by sending identical, individual messages 
to multiple clients). As discussed in Section 3, this type of pseudo- 
broadcast can result in tremendous bandwidth and server overload 
problems. For this reason, we classify such systems as "unicast- 
based" in our taxonomy. 

76 



Pull Push 

Aperiodic Periodic Aperiodic Periodic 

Unicast     1-tc-N Unicast     1-tc-N Unicast     1-to-N Unicast     1-to-N 

request/ 
response 

request/ 
response 
w/snooping 

polling polling 
w/snooping 

e-mailing 
lists 

publish/ 
subscribe 

publish/ 
subscribe 

e-mail list 
digests 

broadcast 
disks 

Figure 1: Data Delivery Options 

profile) indicating the types of information they wish to re- 
ceive. Publish/subscribe is push-based; data flow is initiated 
by the data sources, and is aperiodic, as there is no prede- 
fined schedule for sending data. Publish/subscribe protocols 
are inherently 1-to-N in nature, but due to limitations in cur- 
rent Internet technology, they are often implemented using 
individual unicast messages to multiple clients. Examples of 
such systems include Internet e-mail lists and some existing 
"push" systems on the Internet. True 1-to-N delivery is pos- 
sible through technologies such as IP-Multicast, but such so- 
lutions are typically limited to individual Intranets or Local 
Area Networks. 

Periodic Push - Periodic push has been used for data dis- 
semination in many systems. An example of Periodic Push 
using unicast is Internet mailing lists that send out "digests" 
on a regular schedule. For example, the Majordomo system 
allows a list manager to set up a schedule (e.g., weekly) for 
sending digests. Such digests allow users to follow a mailing 
list without being continually interrupted by individual mes- 
sages. There have also been many systems that use Periodic 
Push over a broadcast or multicast link. These include Tele- 
Text [Amma85, Wong88], DataCycle [Herm87], Broadcast 
Disks [Acha95a, Acha95b] and mobile databases [Imie94]. 

2.3   End-to-End Considerations 

The second source of confusion about push technology is 
the fact that networked information systems typically contain 
many interconnected nodes. These nodes may be (logically) 
organized in various structures, and different data delivery 
mechanisms may be used between different sets of nodes. 
Given the potential heterogeneity of delivery mechanisms in 
a complex system, it is often not appropriate to describe the 
entire end-to-end (i.e., data source to consumer) system as 
"push-based" or "pull-based". 

In general, a distributed information system can be though 
of as having three types of nodes: (1) data sources, which 
provide the base data that is to be disseminated; (2) clients, 
which are net consumers of information; and (3) information 
brokers, (or agents, mediators, etc.) that acquire information 
from other sources, add value to that information (e.g., some 

additional computation or organizational structure) and then 
distribute this information to other consumers. By creating 
hierarchies of brokers, information delivery can be tailored 
to the needs of many different users. 

While the previous discussion has focused primarily on 
different modes of data delivery, the brokers provide the glue 
that binds these modes together. In many cases, the expected 
usage patterns of the brokers can drive the selection of which 
mode of delivery to use. For example, a broker that typically 
is very heavily loaded with requests could be an excellent 
candidate for a push-based delivery mechanism to its clients. 

As we move upstream in the data delivery chain, brokers 
look like data sources to their clients. Receivers of infor- 
mation cannot detect the details of interconnections any fur- 
ther upstream than their immediate predecessor. This prin- 
ciple of network transparency allows data delivery mecha- 
nisms to change without having global impact. Suppose that 
node B is pulling data values from node A on demand. Fur- 
ther, suppose that node C is listening to a periodic broadcast 
from node B which includes values that B has pulled from A. 
Node C will not have to change it's data gathering strategy if 
A begins to push values to B. Changes in links are of inter- 
est only to the nodes that are directly involved. Likewise, this 
transparency allows the "appearance" of the data delivery at 
any node to differ from the way the data is actually delivered 
earlier in the network. This ability to change the appearance 
of data delivery, is at the root of much of the confusion sur- 
rounding push Technology. 

Figure 2 shows a simple example of the importance of 
considering multiple network components and the impact of 
transparency. The figure shows how data delivery is per- 
formed in the initial versions of PointCast. To the user sitting 
at the screen, the system appears to be "push-based"; data 
flows across the screen without any user intervention. Due to 
current limitations of the Internet, however, that data is ac- 
tually brought over to the client machine using a stream of 
periodic pull requests, delivered in a unicast fashion. Thus, 
the implementation of PointCast 1.0 between the client and 
the PointCast server is actually the exact opposite of the view 
that is presented to the user in all three dimensions of the hier- 
archy of Figure 1. This situation is not unique to PointCast; 
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in fact, it is true for virtually all of the Internet-based push 
solutions, and stems from the fact that current IP and HTTP 
protocols do not adequately support push or 1-to-N commu- 
nication. 

3   Reexamining Current Push Technology 

The previous section identified several of the sources of con- 
fusion in the current discussions and debate regarding push 
technology. In particular, the confusion stems from the mis- 
match between the user's perception and the actual data de- 
livery mechanisms used by the system. Furthermore, this 
mismatch is also at the root of many of the performance con- 
cerns (particularly bandwidth overload) associated with cur- 
rent push technology. The impact of the mismatch on perfor- 
mance can be summarized as follows: 

Pull instead of push - Current webcasting solutions typ- 
ically use data pull to obtain information from data sources. 
This choice is due to limitations of the HTTP protocol, which 
is primarily pull-based. As stated previously, replacing push 
with pull requires that the pull be done in a polling man- 
ner. Polling can be quite resource intensive because it gen- 
erates many requests. These requests consume client, server, 
and network resources. The problems are exacerbated if all 
clients poll individually, which could result in servers becom- 
ing overloaded due to the high volume of requests. 

Periodic instead of aperiodic - Polling is typically done in 
a periodic manner that is independent of the events (e.g., data 
modifications) that would require data to be transfered. This 
independence results in a granularity problem: if polling is 
done too frequently, then the overhead can become substan- 
tial; if it is done too infrequently, then clients may unknow- 
ingly be accessing stale data. 

Unicast instead of 1-to-N - In the absence of a true broad- 
cast or multicast facility, systems that require 1-to-N behavior 
must implement it using multiple identical messages, one for 
each intended recipient. The potential bandwidth problems 
of such an approach are obvious. If n clients are interested in 
the same data item, then that same item must be sent over the 
network n times. 

Fortunately, the concept of Network Transparency can be 
used to ameliorate this situation. One solution involves plac- 
ino a local server inside an organization's firewall. All the 
clfents interact with the local server in the way that is most 
appropriate for the local network and system configuration. 

The local server can then perform polling of the remote data 
source on behalf of the entire organization, which reduces In- 
ternet traffic. Likewise, the data source needs only to send a 
single copy of each data item to the local server, which can 
then distribute it to all the clients it represents. The local 
server can then multicast the data to its clients, if such capa- 
bility exists. 

4   Conclusions 

In summary, push is currently a hot topic, but it is essential 
that it be placed in the proper context. Push is one choice 
(among many) for data delivery in distributed information 
systems. Push is not, for example, the same as broadcast. In 
fact, many existing push-based products are based on peri- 
odic pull over unicast connections. In our work on data dis- 
semination, we have advocated a new look at the construction 
of distributed information systems that allows a seamless in- 
tegration of all data delivery mechanisms including, but not 
limited to the various forms of push. We believe that this is 
a fertile area of work for the database community since the 
use of careful data management techniques in this context can 
have a significant impact on overall system performance and 
usability. 
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UNIVERSITY OF FLORIDA 
ATTN:  ERIC HANSON 
CISE DE55! 456 C3E 
GAINESVILLE/ FL 32611-6120 

1819 

1820 

CARNEGIE MELLON UNIVERSITY 
ATTN-  TOM MITCHELL 
COMPUTER SCIENCE DEPARTMENT 
PITTSBURGH, PA 15213-3390 

1821 

CARNEGIE MELLON UNIVERSITY 
ATTN:  *1ARK CRAVEN 
COMPUTER SCIENCE DEPARTMENT 
PITTSBURGH, PA 15213-3590 

1822 

I 

1 

1 

1 

UNIVERSITY OF ROCHESTER 
ATTN:  JAMES ALLEN 
DEPARTMENT OF COMMUTE* SCIENCE 
ROCHESTER, NY 14627 

18 23 

TEXTWISE, LLC 
ATTN:  LIT LIDDY 
2-121 CENTER FOR 
SYRACUSE, NY 

1324 

SCIENCE 
13244 

& TECH 

WRIGHT STATE UNIVERSITY 
ATTN:  DR. BRUCE 9ERRA 
DEPART OF COMPUTER SCIENCE 
DAYTON, OHIO 45435-0001 

132 5 

6 ENGIN 

DL-6 



UNIVERSITY OF FLOPIDA 
ATTN:  SHAR*A CHAKRAVARTHY 
COMPUTER & INFOR SCIENCE DEPART 
GAINESVILLE/ FL 32o22"6l25 

1326 

KESTREL INSTITUTE 
ATTN:  DAVID ES°INOSA 
3260 HILLVIEW AVENUE 
PALO ALTO, CA 94304 

1827 

USC/INFDRMATION SCIENCE INSTITUTE 
ATTN:  DR. CARL KESSELHAN 
11474 ADMIRALTY WAY, SUITE 1001 
MARINA DEL PEY, CA 90292 

1829 

MASSACHUSETTS INSTITUTE OF TECH 
ATTN:  DR. "ICHAELE SIEGEL 
SLOAN SCHOOL 
77 MASSACHUSETTS AVENUE 
CAMBRIDGE, MA 02139 

USC/INFOPMATION SCIENCE INSTITUT: 
ATTN:  DR. «ILLIA« SWARTHOUT 
11474 ADMIRALTY WAY, SUITE 1001 
MARINA DEL REY, CA 90292 

1S30 

1831 

STANFORD UNIVERSITY 
ATTN:  DR. GIO WIEDERHCLD 
857 SIERRA STREET 
STANFORD ,_„r 
SANTA CLARA COUNTY, CA 94305-4125 

SPAWARSYSCEN D44209 
ATTN:  LEAH WONG 
53245 PATTERSON ROAD 
SAN DIEGO, CA 92152-7151 

1832 

1833 

SPAUAR SYSTEM CENTER D4123 
ATTN:  LES ANDERSON 
53560 HULL STREET 
SAN DIEGO CA 92152 

1834 

GEORGE »1AS0N UNIVERSITY 
ATTN:  SUSHIL JAJODIA 
ISSE DEPT 
FAIRFAX, VA 22030-4444 

1835 

DIRNSA 
ATTN:  MICHAEL R. WARE 
DOD, NSA/CSS (R23) 
FT. GEORGE G. MEADE 

1S36 

MD 20755-6000 
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1 1837 
DR- JIM RICHARDSON 
3660 TECHNOLOGY DRIVE 
MINNEAPOLIS» MN 5541E 

1 1838 
LOUISIANA STATE UNIVERSITY 
COMPUTER SCIENCE DEPT 
ATTN:  DR. PETER CHEN 
257 COATES HALL 
BATON ROUGE* LA 70803 

INSTITUTE OF TECH DEPT OF COMP SCI 1 
ATTN:  DR. JAIDEEP SRIVASTAVA 

4-102 EE/CS 
200 UNION ST SE 
MINNEAPOLIS/ MN 55455 

j 1840 
fT E/BBN 
ATTN:  MAURICE M- MCNEIL 
9655 GRANITE RIDGE DRIVE 

SUITE 245 
SAN DIEGO, CA 92123 

i 1841 
UNIVERSITY OF FLORIDA 
ATTN:  DR. SHAR«A CHAKRAVARTHY 
E470 CSE BUILDING 
GAINESVILLE, FL 32611-6125 

i 1865 
AFRL/TFT 
525 BROOKS ROAD 
ROME, NY 13441-4505 

i 1866 
AFRL/IFTM 
525 BROOKS ROAD 
ROME, NY 13441-4505 

CENTRIC ENGINEERING SYSTEM, INC. 1 

624 EAST EVELYN AVENUE 
SUNNYVALE, CA 94086-.648S 

i 1875 
FLUENT INCORPORATED 
500 DAVIS STREET, SUITE 600 
EVANSTON, IL 60201 

THE MACNEAL-SCHMENDLER CORPORATION 1 1876 

815 COLORADO 80ULEVARD 
LOS ANGELES, CA 90041-1777 

DL-8 



MOLECULAR SIMULATIONS, INC. 
9365 SC3ANT0N ROAD 
SAN DIESO, CA 92121-3752 

1 877 

CENTRIC ENGINEERING SYSTEM/' INC. 
624 EAST EVELYN AVENUE 
SUNNYVALE, CA 94036-6488 

1873 

♦Total Number o* CoDies is 92 

DL-9 



MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


